At about 4:30 the lecturer is cheating: The tentative factorization over the integers must take the form (x^2+rx+p)(x^2-rx+q) There is no stated prior reason why r should equal 1 (except by already knowing the result)! With r unknown a completely different solution strategy must be adopted, based on all possible factorizations of the constant term.
@1234larry13 күн бұрын
I tried x^4-14x+5x+30=0, using your method, but the system of equations was q-p=5, q+p=-13 and qp=30. Two of the solutions involved quadratics with “c” that contained a square root for a coefficient.
@nicoz57873 күн бұрын
I suspect you could try to decompose your polynomial as a product of two factors (x²+a*x+p)*(x²-a*x+q) and thus solve a system of 3 equations with 3 unknowns.
@raghvendrasingh12893 күн бұрын
we will use Descartes' method for solving biquadratic equation Let x^4 - 14 x^2 +5x +30 = (x^2 +ax+p)(x^2-ax+q) p q = 30 a(q-p) = 5 p+q - a^2 = - 14 now (q+p)^2 - (q - p)^2 = 4qp hence (a^2- 14)^2 - 25/a^2 = 120 we put t = a^2 t^2 - 28 t+196-25/t-120= 0 t^3 - 28 t^2+76 t- 25 = 0 t = a^2 hence we will use RRT with t = 1 , 25 t = 25 satisfies the equation hence a = 5 q+p = 11 , q - p = 1 q = 6 , p = 5 (x^2+5x+5)(x^2 - 5x+6) however in this case we can factorise easily by RRT by taking x = 2 , 3
@kareolaussen8193 күн бұрын
Introduce y=√(x+5), and rewrite equation as x^2 - y = 5 y^2 - x = 5 Subtract to find x^2 -y^2+x-y=(x-y)(x+y+1)=0. Case y=x => (after squaring) (x-1/2)^2 = 5+1/4 = 21/4 x=(1+√21)/2 is a valid solution, x=(1-√21)/2 is not a valid expression for y as a square root. Case y=-(x+1) => (after squaring) (x+1/2)^2 = 5-1+1/4 = 17/4 x=-(1+√17)/2 is a valid solution. x=(-1+√17)/2 does not lead to a valid expression for y as a square root.
@mercedesclaveras4 күн бұрын
La equis subuno en positiva mayor que cero la que es negativa es la equis subidos
@nguyenthang9462 күн бұрын
How do we know a quartic equation without a cubic can be factorised as (x²+x+p)(x²-x+q) and does it still hold true even when there is a cubic? Also is there any reasoning why the coefficient of x equals 1 anyway? 😄
@1234larry14 күн бұрын
It’s tricky, but not as hard as partial fractions.