Solving A Nice Quintic | Problem 477
10:20
7 сағат бұрын
A Radically Complex Equation | Problem 476
9:01
A Homemade Equation | Problem 475
10:53
16 сағат бұрын
An Exponent That n-tuples | Problem 474
10:22
A 2025 Special | Problem 471
9:59
14 күн бұрын
A Cubic Equation | Problem 465
10:20
21 күн бұрын
A Quartic Equation | Problem 463
10:56
A Radical Equation | Problem 462
9:14
Пікірлер
@mcwulf25
@mcwulf25 Сағат бұрын
Nice #3.
@mcwulf25
@mcwulf25 Сағат бұрын
"I always make mistakes " 😂😂😂 I spotted the a^2 error and started writing thus message even I saw you correct it 😂
@ruud9767
@ruud9767 3 сағат бұрын
z=1 is an obvious solution Bring everything to the lhs: z^2 + (i-1)z -1=0 divide lhs (using long division) by z-1, since z=1 is a solution you get z+i+1, so you can factor z^2 + (i-1)z -1 = (z-1)(z+i+1) = 0 This gives z=1 or z=-1-i
@scottleung9587
@scottleung9587 3 сағат бұрын
Got 'em both!
@bobbyheffley4955
@bobbyheffley4955 3 сағат бұрын
I used the second method.
@SweetSorrow777
@SweetSorrow777 3 сағат бұрын
You had a product of 2 quadratics which you have set to zero, which means you could've used the quadratic formula. 4th method? Writing z and the righthand side in polar form.
@b.haroun
@b.haroun 4 сағат бұрын
A mistake@5:57 it equals to 1 not 0
@andreaparma7201
@andreaparma7201 Күн бұрын
This is how I like solving this kind of equation: |z|-4=2i-iz, so that 2i-iz must be a real number, say t. Then 2i-iz=t -> z=2+it and substituting in the initial equation we get sqrt(t²+4)=4+t and we conclude as in the video
@aplusbi
@aplusbi Күн бұрын
That’s cool!
@СергейДорошенко-ю7в
@СергейДорошенко-ю7в Күн бұрын
But this is complex root and it has 2 roots?
@aplusbi
@aplusbi Күн бұрын
We found the principal square root
@draymondgreen7606
@draymondgreen7606 Күн бұрын
Hello can anyone please tell me what kind of math is this. Trig calculus, physics 🤷
@aplusbi
@aplusbi Күн бұрын
This is Complex Numbers and it’s under Complex Analysis
@stevefurrier9932
@stevefurrier9932 Күн бұрын
Ans you need ro write down thwt z^2 can't be zero,otherwise we would dividd by zero
@stevefurrier9932
@stevefurrier9932 Күн бұрын
It's easier if you make z^2= a,solve and then substitute back
@mcwulf25
@mcwulf25 2 күн бұрын
I started down another method - multiply by the conjugates which gives |z|^2 + |z|(z - /z)i - |z|^2 = 4^2 + 2^2 2b|z| = 20 But then I watched your video and your method is easier 😂
@aplusbi
@aplusbi Күн бұрын
Conjugates?
@mcwulf25
@mcwulf25 Күн бұрын
@aplusbi complex ones
@scottleung9587
@scottleung9587 2 күн бұрын
Got it!
@mimidou8690
@mimidou8690 2 күн бұрын
Z= -3i -1
@Don-Ensley
@Don-Ensley 2 күн бұрын
problem |z| + i z = 4 + 2 i Let z = a + b i |z| = √(a² + b²) √(a² + b²) + i a - b = 4 + 2 i √(a² + b²) - b = 4 a = 2 √(4 + b²) = 4 + b Square. 4 + b² = b² + 8 b + 16 8 b = -12 b = -3/2 answer z = 2 - 3/2 i
@yoav613
@yoav613 2 күн бұрын
Nice problem that i solved in my head😊
@aplusbi
@aplusbi Күн бұрын
I wish I could solve things in my head 😅🤪
@justinchavez9700
@justinchavez9700 2 күн бұрын
(sqrt(5) +/- 1)/2
@NadiehFan
@NadiehFan 2 күн бұрын
You really should have finished your first method. At 5:53 we have (z² + ¹⁄₂z + k)² = (2k − ³⁄₄)z² + (k − 1)z + (k² − 1) Do you see what I see? People shouldn't believe you when you say that solving this is going to be super time consuming, because it is not. Both the coefficient of the linear term _and_ the constant term of the quadratic in z at the right hand side reduce to zero for k = 1 (making its discriminant equal to zero) and this gives us (z² + ¹⁄₂z + 1)² = ⁵⁄₄z² or (z² + ¹⁄₂z + 1)² = (¹⁄₂√5·z)² which is easy to solve.
@Don-Ensley
@Don-Ensley 2 күн бұрын
problem z⁵ = 1 Use the polar form of 1. 1 = e^(i 2πN), N ∈ ℤ z⁵ = e^(i 2πN) Take to (1/5) power. z = e^(i 2πN/5) The distinct values of N are from 0 to 4, then the angles repeat. N=0, angle 0° z = 1 N=1, angle 72° z = e^(i 2π/5) = (√5-1)/4 + i√(10+2√5)/4 N=2, angle 144° z = e^(i 2πN/5) = -(√5+1)/4 + i √(10-2√5)/4 N=3, angle 216° z = e^(i 2πN/5) = -(√5+1)/4 - i √(10-2√5)/4 N=4, angle 288° z = e^(i 2πN/5) = (√5-1)/4 - i√(10+2√5)/4 answer z ∈ { 1, (√5 - 1) / 4 + i √(10+2√5)/4, -(√5 + 1) / 4 + i √(10-2√5)/4, -(√5 + 1) / 4 - i √(10-2√5)/4, (√5 - 1) / 4 - i √(10+2√5)/4 }
@mcwulf25
@mcwulf25 2 күн бұрын
There's a neat solution for finding cos(2pi/5). Express in terms of cos(pi/5) and then equate cos(4pi/5) to cos(pi - pi/5). All using double angle formulae and a quadratic equation.
@Etienne-pq3dx
@Etienne-pq3dx 2 күн бұрын
Why this channel couldn't be (Re) named ? R*e(i*arg(z) ) for example ? 😉 When polynome degree is high, polar form is often more efficient.
@awesome7006
@awesome7006 3 күн бұрын
This is just a 5th roots of unity problem; thus the solutions are e^(0ipi/5), e^(2ipi/5), e^(4ipi/5), e^(6ipi/5), and e^(8ipi/5).
@scottleung9587
@scottleung9587 3 күн бұрын
Nice!
@bkkboy-cm3eb
@bkkboy-cm3eb 4 күн бұрын
z√z=2√2+2√2i =4(1/√2+i/√2) =4e^(iπ/4) ∴z=³√16·e(iπ/6) =³√16(√3/2+1/2·i) =³√2(√3+i)
@Don-Ensley
@Don-Ensley 4 күн бұрын
problem z√z = 2√2 + 2√2 i z^(3/2) = 2√2 ( 1 + i ) Use the polar form of 1 + i. 1 + i = √2 e^( i π (1/4 + 2N) , where N is an integer. z^(3/2) = 2√2 [√2 e^( i π (1/4 + 2N) ] z^(3/2) = 4 [ e^( i π (1/4 + 2N) ] Raise both sides to the power 2/3. [z^(3/2)]^(2/3) = [(4^(2/3)] [ e^( 2 i π (1/4 + 2N) /3] z = (2∛2) e^[ i π ( 8N + 1 ) /6 ] , N = 0,1,2 At N=3 the angles start to repeat. Thus the set of distinct answers is z = (2∛2) ( cos π /6 + i sin π /6) = (2∛2) (√3/2 + i / 2) z = (2∛2) ( - i ) z = (2∛2) (-√3/2 + i / 2) answer z ∈ { -2 ∛2 i, ∛2 (-√3+ i ), ∛2 ( √3 + i ) }
@mcwulf25
@mcwulf25 4 күн бұрын
You were doing well till the end!!! n = 0, 1 or 2.😂 Of course the "doing it in my head" version was noticing that the rhs has a modulus of 4 and an argument of pi/4. So z^3 has modulus of 16 and argument of pi/2. z = cbrt(16) * [cube roots of i]. But will there be extraneous solutions because of the sqrt sign in the original equation??? That's something to think about... 😉
@scottleung9587
@scottleung9587 5 күн бұрын
Nice!
@0over0
@0over0 5 күн бұрын
why can't u just wait until the END to think about minor roots, i.e,- z^3 = 16i = 16e^(PI/2), z = 16^(1/3) * (e^ i [PI/2]) ^ (1/3) = 16^(1/3) * e^ i [PI/6]. Now we add 2nP: z = 16^(1/3) * e^ i [ (PI/6) + 2nPI] ?
@mcwulf25
@mcwulf25 4 күн бұрын
Because the 2pi.n also has to be divided by 3
@Entroper
@Entroper 5 күн бұрын
z^(3/2) = 2sqrt(2)*(1+i) z^(3/2) = 4*[1/sqrt(2) + i/sqrt(2)] <-- this is now a unit vector z^(3/2) = 4*e^(i*pi/4) <-- also, plus 2pi*n, if you want all the solutions here z = [4*e^(i*pi/4)]^(2/3) z = cbrt(4^2)*e^(i*pi/6) z = 2*cbrt(2)*[sqrt(3)/2 + i/2] z = cbrt(2)*sqrt(3) + cbrt(2)*i
@0over0
@0over0 6 күн бұрын
All good comments, folks!
@Don-Ensley
@Don-Ensley 6 күн бұрын
problem z ⁱ = e ⷫᐟ² Take both sides to the power -i. ( z ⁱ )⁻ⁱ = ( e ⷫᐟ² )⁻ⁱ Multiply exponents. z = e⁻ⁱ ⷫᐟ² This is only the principle root. Add n times 2π to the angle for the general case. z = e⁻ⁱ ⷫᐟ² = e ⁻ⁱ ⷫ ⁽¹ᐟ²⁺²ⁿ⁾, n ∈ ℤ Since n is an integer however, this always comes back to z = -i answer z = - i
@mcwulf25
@mcwulf25 7 күн бұрын
Raise both sides to the power i and you can miss out the ln bits.
@aplusbi
@aplusbi 5 күн бұрын
That is so smart! Never occurred to me 😄
@mcwulf25
@mcwulf25 5 күн бұрын
@aplusbi Thanks! Keep them coming 😁👍
@TheMathManProfundities
@TheMathManProfundities 7 күн бұрын
Your final solution, z = e^{-i(π/2 + 2πn)} is just z = -i. But there are actually infinitely many solutions of which this is only one. Solution is z = (-i)e^(2kπ) ∀k∈Z.
@SweetSorrow777
@SweetSorrow777 7 күн бұрын
I would start with z = r *(e^(i*(theta))). So now we got e on both sides.
@FisicTrapella
@FisicTrapella 7 күн бұрын
Just draw e^(-i pi/2) in the complex plane. r = 1 theta = - pi/2 => (-i)
@scottleung9587
@scottleung9587 7 күн бұрын
I also got -i.
@ruud9767
@ruud9767 7 күн бұрын
How about a shorter path: raise both sides to the power -i and there's your principal solution. because (z^i)^-i = z^1 Slightly longer is raising both sides to 1/i, but that's the same
@matthewfeig5624
@matthewfeig5624 7 күн бұрын
The equation only involves the reciprocal of z. So multiplying by 25 and defining w=25/z will make things much easier. In terms of w, the equation reads w + |w| = 9 + 3i ** |w| is real, so we read off that the imaginary part of w must be 3: w = c + 3i. Equating the real parts of **, we then get c + sqrt(c^2 + 3^2) = 9. This is not hard to solve and results in c=4. We have w, and can take a reciprocal to get back to z. 25/z = w = 4 + 3i z = 25/(4 + 3i) = 4 - 3i.
@davidseed2939
@davidseed2939 8 күн бұрын
Can we not go directly from I^z=ni The very end Zlni= ln(n) +lni z= ln(n)/ln(i) +1 z= 1+ ln(n)/( ia π )) z=1 -i ln(n)/(a.π) where a= 2k+1/2
@krabbediem
@krabbediem 8 күн бұрын
ni?! Be very careful, the knights may be lurking
@aplusbi
@aplusbi 8 күн бұрын
😄
@Don-Ensley
@Don-Ensley 8 күн бұрын
problem i ᶻ = n i Assume n is integer. Take the natural logarithm of each side. Bring down exponents. z ln i = ln n + ln i Subtract ln i from each side. z ln i - ln i = ln n Factor. z ln i - ln i = ln n ( z - 1 ) ln i = ln n Substitute for ln i. ln i = i π ( 1/2 + 2 K ), K an integer. ( z - 1 ) i π ( 1/2 + 2 K ) = ln n Multiply by -i. ( z - 1 ) π ( 1/2 + 2 K ) = - i ln n Divide by π ( 1/2 + 2 K ). ( z - 1 ) = - i ln n / [ π ( 1/2 + 2 K ) ] z = 1 - 2 i ln n / [ π ( 4 K + 1 ) ] answer z ∈ { 1 - 2 i ln n / [ π ( 4 K + 1 ) ], ( n, K ∈ ℤ ) }
@mcwulf25
@mcwulf25 8 күн бұрын
At the end, you used k on both sides. Then cancelled. This is wrong. Mostly. You should have not 1 but (1 + 4k)/(1 + 4m)
@aplusbi
@aplusbi 8 күн бұрын
Does that work?
@mcwulf25
@mcwulf25 8 күн бұрын
@aplusbi Should do. We can't simply assume k=m.
@scottleung9587
@scottleung9587 9 күн бұрын
Cool!
@siavashrahimian1514
@siavashrahimian1514 9 күн бұрын
Use Euler formula
@Don-Ensley
@Don-Ensley 9 күн бұрын
problem 1/z + 1 / |z| = ( 9 + 3 i ) / 25 z • z̅ = | z |² , where z̅ is the complex conjugate of z. 1/ |z| = 1 / √(z • z̅ ) = √(z • z̅ ) / (z • z̅ ) 1/z + √(z•z̅ ) / (z•z̅ ) = ( 9 + 3 i ) / 25 [ z̅ +√(z•z̅ ) ] / (z•z̅ ) = ( 9 + 3 i ) / 25 Replace z with a+ b i. z = a + bi [ a - bi +√(a²+ b² ) ] / (a²+ b²) = ( 9 + 3 i ) / 25 (a²+ b²) = 25 √(a²+ b² ) = 5 ( a - bi + 5 ) / 25 = ( 9 + 3 i ) / 25 a - bi + 5 = 9 + 3 i a - bi = 4 + 3 i a = 4 b = -3 answer z = 4 - 3 i
@lhdill2009
@lhdill2009 9 күн бұрын
Let the RHS be C. Isolate the z-term to get 1/z = C - 1/|z|. Take the absolute value of both sides and square the results to get 1/|z|^2 = |C|^2 - (C+Cbar)/|z| + 1/|z|^2. Then |C|^2 - (C+Cbar)/|z| = 0. Solve for |z| to get |z| = 5. Use this result in the first equation to get zbar = 4 + 3 i so that z = 4 - 3 i.
@guyhoghton399
@guyhoghton399 9 күн бұрын
Thank you. Here is an alternative way. ( _Using _*_j = √(-1)_*_ instead of _*_i_*_ because I can't get a suitable _*_i_*_ superscript._ ) *_1/z + 1/|z| = (9 + 3j)/25_* ... ① ⇒ _(|z| + z)/z|z| = (9 + 3j)/25_ ⇒ _(1 + z/|z|)/z = (9 + 3j)/25_ Let *_z = reʲᵗ = r( cos(t) + jsin(t) )_* where _r = |z|_ and _t_ is some angle. ∴ _(1 + eʲᵗ)/reʲᵗ = (9 + 3j)/25_ ⇒ _r⁻¹(1 + e⁻ʲᵗ) = (9 +3j)/25_ ⇒ _1 + cos(-t) + jsin(-t) = (9r + 3rj)/25_ ⇒ _cos(t) - jsin(t) = (9r - 25)/25 + 3rj)/25_ ⇒ *_sin(t) = -3r/25, cos(t) = (9r - 25)/25_* ... ② ∴ _1 = sin²(t) + cos²(t) = (9r² + 81r² - 450r + 625)/625_ ⇒ _90 r² - 450r + 625 = 625_ ⇒ *_r(r - 5) = 0_* _r = 0 ⇒ |z| = 0_ which does not work in ① ∴ _r = 5_ ∴ from ②: _sin(t) = -⅗, cos(t) = ⅘_ ∴ *_z = 5(⅘ - ⅗j) = 4 - 3j_*
@scottleung9587
@scottleung9587 10 күн бұрын
Nice!
@angelishify
@angelishify 10 күн бұрын
a = kb and b=−√b^2 since b < 0. k−√(k^2+1) = −3 and k = −4/3.