A Nice Logarithmic Equation | Problem 429
10:06
A Very Interesting Sum | Problem 426
10:24
9 сағат бұрын
A Radical Equation | Problem 422
9:52
16 сағат бұрын
A Sum of Powers | Problem 421
9:47
19 сағат бұрын
A Problem With High Powers | Problem 420
10:18
A Radical Equation| Problem 416
10:44
A Nice Radical Equation | Problem 414
9:13
A Nice Nonic Equation | Problem 408
9:42
A Cosine Equation | Problem 404
12:10
21 күн бұрын
A Nice Quartic Equation | Problem 401
8:09
Пікірлер
@williamsadler6467
@williamsadler6467 Сағат бұрын
The problem is the cosine function works with real numbers. If you want it to output imaginary numbers, you have to start with an imaginary cosine function. Once you extend it into the complex number field, it is no longer the same function.
@robertethanbowman
@robertethanbowman 3 сағат бұрын
Given that cosine can be 2 with the domain expanded to complex numbers, what values of Cos x can never exist?
@phill3986
@phill3986 10 сағат бұрын
😎👍👏👍😎
@scottleung9587
@scottleung9587 13 сағат бұрын
Cool!
@stevemonkey6666
@stevemonkey6666 16 сағат бұрын
I am the new Euler. I got the answer in 5 seconds. The answer is arccos(2) 👋😁
@paraskumar9850
@paraskumar9850 8 сағат бұрын
🤪💀
@Don-Ensley
@Don-Ensley 18 сағат бұрын
problem cos θ = 2 Preliminary note: By even symmetry of the cosine, for any solution θ found, -θ is also a solution. Use the complex cosine definition based on Euler's formula. cos θ = ( e ⁱ ᶿ + e ⁻ ⁱ ᶿ ) / 2 Set this equal to 2. ( e ⁱ ᶿ + e ⁻ ⁱ ᶿ ) / 2 = 2 Multiply by 2. e ⁱ ᶿ + e ⁻ ⁱ ᶿ = 4 Let y = e ⁱ ᶿ y + 1 / y = 4 y² - 4 y + 1 = 0 ( y - 2 )²- 3 = 0 ( y - 2 )² = 3 y - 2 = ± √3 y = 2 ± √3 Back substitute. e ⁱ ᶿ = y e ⁱ ᶿ = 2 ± √3 This is positive for either sign of the radical. Take natural logarithms. i θ = ln ( 2 ± √3 ) Multiply both sides by -i. - i • i θ = -i ln ( 2 ± √3 ) - i² θ = -i ln ( 2 ± √3 ) - (-1) θ = -i ln ( 2 ± √3 ) θ = -i ln ( 2 ± √3 ) and by symmetry, θ = i ln ( 2 ± √3 ) Interestingly, because (2+√3) = (2+√3)(2-√ 3)/(2-√3) = 1/(2-√3) then ln ( 2+√3 ) = - ln ( 2-√3 ) So -i ln ( 2 + √3 ) = i ln ( 2 - √3 ) and -i ln ( 2 - √3 ) = i ln ( 2 + √3 ) So the symmetry consideration is in this case redundant. Because cosine has a period of 2π, then if θ is a solution then so is θ + 2π N where N is an integer. θ = 2πΝ + i ln ( 2 ± √3 ) , where N ∈ ℤ answer θ ∈ { 2πΝ + i ln ( 2 - √3 ), 2πΝ + i ln ( 2 + √3 ), ( N ∈ ℤ ) }
@georgelaing2578
@georgelaing2578 20 сағат бұрын
This series of lectures should be enough to provide a basis for a course in complex analysis. Thank you for providing this!😎
@SweetSorrow777
@SweetSorrow777 21 сағат бұрын
Didn't you do this problem already? Maybe I'm thinking of another math youtuber.
@DatBoi_TheGudBIAS
@DatBoi_TheGudBIAS 17 сағат бұрын
Bprp
@Sugarman96
@Sugarman96 17 сағат бұрын
I'm almost positive bprp did this (though he might have done it with sine)
@cav1928
@cav1928 21 сағат бұрын
I agree with the solution. Curiously WA, give for principal value (n=0) x= arcos(2) or x= - arcos (2) , without further development .
@dixonblog
@dixonblog 22 сағат бұрын
I came up with: z_1(n) = ((3π/4)+2πn) + i(-ln((sqrt(3)+1)/sqrt(2))) z_2(n) = ((7π/4)+2πn) + i(-ln((sqrt(3)-1)/sqrt(2)))
@moonmartex
@moonmartex 23 сағат бұрын
Nice vid! Another quicker way is as we know that cos(theta) = 2, and sin(theta) = ± (√3) i, then by Euler's formula e^i(theta) = cos(theta) + i sin(theta) = 2 + i (±√3 i) = 2 ± √3, and then we do the same as you and turn it to a complex number.
@Sixth_1
@Sixth_1 23 сағат бұрын
Bsquare root of both sides and used twice will be the result 😅 Z = 2
@cribless810
@cribless810 20 сағат бұрын
There are also 2 imaginary solutions and another real solution (z=-2)
@Sixth_1
@Sixth_1 20 сағат бұрын
@cribless810 It will be two answers Z=2 Z=2i
@alexiosangel2221
@alexiosangel2221 23 сағат бұрын
I don’t think you need to make trigonometry videos. Unlike complex analysis, knowledge of trigonometry is a prerequisite for calculus, which is what you are doing. I also noticed you didn’t advertise that you were @sybermath in this video. Did you forget?
@georgelaing2578
@georgelaing2578 23 сағат бұрын
Hello my friend. I just found this extra channel, so I'm subscribing to it. I have to keep up with your latest venture!😎
@Don-Ensley
@Don-Ensley Күн бұрын
problem ln(z+i) = 1+i z + i = e^(1+i) z +i = e^(1+i) = e¹ • e^i = e • e ⁱ = e ( cos 1 + i sin 1 ) z = e cos 1 + i ( e sin 1 - 1 ) answer z = e cos 1 + i ( e sin 1 - 1 )
@mayankthakur5341
@mayankthakur5341 Күн бұрын
Z= e^(1+i) -i
@RealQinnMalloryu4
@RealQinnMalloryu4 Күн бұрын
(24)^2 (12i)^2={576 ➖ 144i^2}=432i 10^40^32 10^4^10^4^8 2^5^2^2^2^5^2^2^2^3 1^1^1^1^1^1^1^1^1^1^2 1^2 (z➖ 2z+1i).
@moonmartex
@moonmartex Күн бұрын
Like others I also used the second method, but I find the first one way more interesting. Well done!
@aplusbi
@aplusbi Күн бұрын
Thanks! I’m glad to hear that
@souzasilva5471
@souzasilva5471 Күн бұрын
I couldn't see the answer to the question, its resolution is very confusing. Say the value Z = ?
@scottleung9587
@scottleung9587 Күн бұрын
I used the second method.
@alexiosangel2221
@alexiosangel2221 Күн бұрын
I immediately knew that you could exponentiate the ln
@AntimatterBeam8954
@AntimatterBeam8954 Күн бұрын
Same
@mcwulf25
@mcwulf25 2 күн бұрын
Plus 2.pi.n.i
@LawrenceFrank-nu3tw
@LawrenceFrank-nu3tw 2 күн бұрын
How did you get to the next term
@Don-Ensley
@Don-Ensley 2 күн бұрын
problem z̅ + z |z| = 24 - 12 i Define z = x + i y z̅ + z |z| = 24 -12 i Translates to x - i y + ( x + i y) √( x² + y² ) = 24 - 12 i Let √( x² + y² ) be denoted by m for modulus. x - i y + ( x + i y) m = 24 - 12 i x ( m + 1 ) + i y ( m - 1 ) = 24 - 12 i Separating out real and imaginary parts' equations x ( m + 1 ) = 24 y ( m - 1 ) = -12 x² = [24/(m+1) ]² = (24²)/(m² +2m+1) y² = [12/(m-1) ]² = (12²)/(m²-2m +1) x² +y² = m² =[ (24²) ( m-1)² +(12²) (m+1)²] / [(m²-1)² ] Expand. m⁶-2 m⁴-719 m² + 864 m -720 = 0 m = 5 is a root by RRT. This is the only positive non-complex root which we need for the modulus. x ( 5 + 1 ) = 24 y ( 5 - 1 ) = -12 6x = 24 4y = -12 x = 4 y = -3 answer z = 4 - 3i
@ciapennap900elarusenindel_9
@ciapennap900elarusenindel_9 2 күн бұрын
Congrats! Just 2 small things: you took the wrong sign for the 12 i, and in the end it's just 4 - 3 i. (y*(m-1)=-12 does not allow a "+-" for y). But you were more careful than I was: on noticing that it would be a 6th-order equation for m, I suspeced it had to be low integers. From x*(1 + sqrt(x²+y²) )=24, I took the only Pythagorean triple well below 24 ... I was still thinking about other real roots, when you came out with your solution. Note added for people too lazy to deal with 6th order equations (like myself): with a delay of 24 h I finally noticed that it's not necessary to expand the eq., it's already clear from the "original m eq." (m²= ...) that there is just 1 real solution as the LHS is strictly increasing while the RHS strictly decreases with m, once m>1 (on the other hand, we never reach 24 with m<=1). So we're done, m=5 is the only real solution.
@Don-Ensley
@Don-Ensley 2 күн бұрын
@ i corrected to -12 i. Thanks for the hot tips!
@aplusbi
@aplusbi 2 күн бұрын
Nice work! You beat me 😁
@aplusbi
@aplusbi 2 күн бұрын
I came out with WA’s solution, hehe! 😂
@Don-Ensley
@Don-Ensley 2 күн бұрын
@ i concentrated on the modulus and solved for it, then found a and b in terms of the modulus, calling it m, even though it is √ (a² +b²), like substitution. This led to a sixth degree polynomial which fortunately had a root of 5 by RRT ( one of 2 real roots the other of which was negative), so the 5 had to be the modulus because it couldn't be negative or complex which the other 5 roots were. Great video and teaching!
@Don-Ensley
@Don-Ensley 2 күн бұрын
The curve I found (not that it is correct) has the shape in polar coordinates of a sideways teardrop extending to infinity every 2π radians due to the ln (sin θ/2) term. problem Can you sum 1 + cos θ / 2 + cos 2θ / 4 + cos 3 θ / 6 + ... Call it S. In sigma notation, with leading 1 taken separately, the sum, S, is   ͚ S = 1 + Σ cos nx /( 2 n )   ⁿ⁼¹ Recall Euler's formula e ⁱ ᶿ = cos θ + i sin θ Re(e ⁱ ᶿ) = cos θ Recall the series representation for ln(1-x). ͚ ln(1-x) = - Σ ( xⁿ ) / n   ⁿ⁼¹ Let     ͚ P = Σ cos nx /( 2 n )  ⁿ⁼¹ S = 1 + P     ͚ P = ½ Σ cos nx / n   ⁿ⁼¹ ͚ Re( ln(1-e ⁱ ᶿ) )= - Σ ( Re(e ⁱ ᶿ ⁿ) ) / n   ⁿ⁼¹ , which is in terms of P Re( ln(1-e ⁱ ᶿ) )= -2 P Solve for P. P = - ½ Re( ln(1-e ⁱ ᶿ) ) S = 1 - ½ Re( ln(1-e ⁱ ᶿ) ) All now to do is evaluate Re( ln(1-e ⁱ ᶿ) ) = Re ( ln ( 1 - cos θ - i sin θ ) ) Focusing on the argument of ln, 1 - cos θ - i sin θ Using double angle formulas, cos θ = cos [2 (½θ)] = cos²( θ/2) - sin²( θ/2) = 1- 2 sin²( θ/2) sin θ = sin [2 (½θ)] = 2 sin (θ/2) cos(θ/2) 1 - cos θ - i sin θ = 1-(1- 2 sin²( θ/2))- i 2 sin (θ/2) cos(θ/2) = 2 sin²( θ/2) - i 2 sin (θ/2) cos(θ/2) = 2 sin (θ/2) [ sin (θ/2) - i cos(θ/2) ] = 2 sin (θ/2) [ sin (θ/2) - i cos(θ/2) ] = -2 i sin (θ/2) [ cos(θ/2) + i sin (θ/2) ] = -2 i sin (θ/2) [ e ⁱ ᶿᐟ² ] So the argument to ln is -2 i sin (θ/2) [ e ⁱ ᶿᐟ² ]. ln ( 1 - cos θ - i sin θ ) = ln { -2 i sin (θ/2) [ e ⁱ ᶿᐟ² ]} = ln ( -2 i sin (θ/2)) + i θ / 2 = ln(-2i) + ln[ sin (θ/2) ]+ i θ / 2 = -2i has modulus 2 and angle -π/2. Polar form of -2i is -2i = 2 e^(-i π/2) ln ( 1 - cos θ - i sin θ ) = ln(2 e^(-i π/2)) + ln[ sin (θ/2) ]+ i θ / 2 = ln 2 -i π/2 + ln[ sin (θ/2) ]+ i θ / 2 = ln 2 + ln[ sin (θ/2) ]+ i (θ-π) / 2 Re( ln(1-e ⁱ ᶿ) ) = ln 2 + ln[ sin (θ/2) ] S = 1 - ½ { ln 2 + ln[ sin (θ/2) ] } = 1 - ½ ln 2 - ½ ln [ sin (θ/2) ] answer 1 - ½ ln 2 - ½ ln [ sin (θ/2) ]
@scottleung9587
@scottleung9587 2 күн бұрын
I also got 4-3i as the answer - good job, WA!
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs 2 күн бұрын
(0.2Sqrt[5+240Sqrt[5]])-0.2Sqrt[5]+i(0.1Sqrt[5]-0.1Sqrt[5+240Sqrt[5]])+(0.2Sqrt[5+240Sqrt[5]])-0.2Sqrt[5]+i(0.1Sqrt[5]-0.1Sqrt[5+240Sqrt[5]])Abs[(0.2Sqrt[5+240Sqrt[5]])-0.2Sqrt[5]+i(0.1Sqrt[5]-0.1Sqrt[5+240Sqrt[5]])]=24-12i -1/Sqrt[5]+Sqrt((1/5)(1 + 48Sqrt(5)))+i((1/2)Sqrt((1/5)(1 + 48 sqrt(5)))-1/(2Sqrt[5]))+-1/Sqrt[5]+Sqrt((1/5)(1 + 48Sqrt(5)))+i((1/2)Sqrt(1/5 (1 + 48 sqrt(5)))-1/(2Sqrt[5]))+Abs[ -1/Sqrt[5]+Sqrt((1/5)(1 + 48Sqrt(5)))+i((1/2)Sqrt(1/5 (1 + 48 sqrt(5)))-1/(2Sqrt[5]))]=24-12i Z=(0.2Sqrt[5+240Sqrt[5]])-0.2Sqrt[5]+i(0.1Sqrt[5]-0.1Sqrt[5+240Sqrt[5]])
@rodrigoll8407
@rodrigoll8407 3 күн бұрын
Very ez
@이현규-b7i
@이현규-b7i 3 күн бұрын
(1+i)/2
@Don-Ensley
@Don-Ensley 3 күн бұрын
problem zᵉ^ᶻ = -i / π Raise both sides to power (1/z). [ zᵉ^ᶻ ]⁽¹ᐟᶻ⁾ = (-i / π) ⁽¹ᐟᶻ⁾ zᵉ = (-i / π) ⁽¹ᐟᶻ⁾ Take lns. Bring down exponents. e ln z = (1/z) ln (-i / π ) Polar form of -i is -i = e^[ -iπ(½+2N)] , where N is an integer. Divide by e and multiply by z. z ln z = (1/e) [ - ln π - iπ(½+2N) ] ln z e ˡⁿ ᶻ = (1/e) [ -ln π - iπ(½+2N) ] ln z = W [- (ln π)/e - iπ (½+2N)/e ] z = e^ { W [- (ln π)/e - iπ (½+2N)/e ] } answer z = e^ { W [- (ln π)/e - iπ (½+2N)/e ] }, ( N ∈ ℤ )
@immortal_kind7680
@immortal_kind7680 3 күн бұрын
How did I end up here.
@mcwulf25
@mcwulf25 3 күн бұрын
Another Wolfram solution was 2 + 4i. Not seeing that!
@mcwulf25
@mcwulf25 3 күн бұрын
You made the rhs hard work. -i/pi = -1/i.pi doesn't require any ln stuff.
@Gunslinger-us1ek
@Gunslinger-us1ek 3 күн бұрын
NO WAY YOURE SYBERMATH IM SUBBED TO YOU BOTH OMG YAY
@MAZHOR1113
@MAZHOR1113 3 күн бұрын
how didn't you notice yet? They are exactly the same
@aplusbi
@aplusbi 3 күн бұрын
😍😁
@Patience-Human
@Patience-Human 3 күн бұрын
2:37 you could give it SUM_SYMBOL (capital sigma) n=1 to infinity of (i^n)/n
@ts9dream
@ts9dream 3 күн бұрын
He did later
@Patience-Human
@Patience-Human 3 күн бұрын
@@ts9dream I guess my PATIENCE is not PERSEVERANT enough so I'm not DETERMINED to watch to that moment. I'm filled with KINDNESS so I'm not gonna start a BRAVE(ry) angry conversation, because my INTEGRITY is stable.(undertale refence)
@yoav613
@yoav613 3 күн бұрын
Nice😊
@aplusbi
@aplusbi 3 күн бұрын
Thanks 😊
@scottleung9587
@scottleung9587 3 күн бұрын
Nice!
@aplusbi
@aplusbi 3 күн бұрын
Thank you! 😊
@DJ.Nihad6174
@DJ.Nihad6174 4 күн бұрын
same answer with your answer
@DJ.Nihad6174
@DJ.Nihad6174 4 күн бұрын
Method 2. we will use nth powers of i here. i +i² /2 +i³ /3 +i^4 /4 +... = i -1 /2 -i /3 +1 /4 +... Let's separate the last statement into real and imaginary parts. =(-1 /2 +1 /4 -1 /6 +...) +(1 -1 /3 +1 /5 -1 /7 +...)×i. Sum the series in the real part. -1 /2 +1 /4 -1 /6 +... we know from series theory that 1 -1 /2 +1 /3 -1 /4 +... =ln2. then implies that =-1 /2 ×(1 -1 /2 +1 /3 -1 /4 +...) =-ln2 /2. now Sum the series in the imaginary part. we know that 1 -1 /3 +1 /5 -1 /7 +... =π /4. and our final answer is -ln2 /2 +iπ /4.
@aplusbi
@aplusbi 3 күн бұрын
Very nice!
@RashmiRay-c1y
@RashmiRay-c1y 4 күн бұрын
x+x^2/2+x^3/3 + .... = -ln(1-x). Set x = i. So, S=-ln(1-i) = -ln[√2 e^(7pi i/4)] = -1/2 ln 2 -7 pi i/4.
@AntimatterBeam8954
@AntimatterBeam8954 4 күн бұрын
I love your videos, I've been binge watching them and I hope this albeit small amount of money helps. I'm low income so can't do much more :(
@aplusbi
@aplusbi 3 күн бұрын
Thank you for taking the time to think of me; it truly means more than you know.
@AntimatterBeam8954
@AntimatterBeam8954 3 күн бұрын
@aplusbi You're welcome 🙂
@raghvendrasingh1289
@raghvendrasingh1289 4 күн бұрын
(-i)^2+(-i)^3+(-i)^4 = -1+i+1 = i
@JdeBP
@JdeBP 4 күн бұрын
With the sound being about 5 seconds out of synch with the picture, this is almost unwatchable.
@AntimatterBeam8954
@AntimatterBeam8954 4 күн бұрын
I'm sure they'll fix it
@ConradoPeter-hl5ij
@ConradoPeter-hl5ij 4 күн бұрын
First, consider this: i¹=i i²=-1 i³=-i i⁴=1 Now we can solve the problem. S= i+i²/2+i³/3+i⁴/4+...+iⁿ/n+... S= i-(1/2)-(i/3)+(1/4)+...+iⁿ/n+... S= iΣ[1/(4n+1)] -Σ[1/(4n+2)] -iΣ[1/(4n+3)] +Σ[1/(4n+4)] all this sums are finite because the terms lie between 0 and 1 Make the calculus to obtain each sum, operate the anwsers and done.
@damyankorena
@damyankorena 4 күн бұрын
8:58 mmm yes remove absolute value.
@Don-Ensley
@Don-Ensley 4 күн бұрын
problem Can you sum i + i² + i³ + i⁴ + ... Call the sum S. Using sigma notation ∞ S = Σ (i ⁿ) / n ⁿ⁼¹ Suppose f(x) is defined as ∞ f(x) = Σ xⁿ/n ⁿ⁼¹ Take the derivative of f with respect to x. ∞ f'(x) = Σ nx⁽ⁿ⁻¹⁾/n ⁿ⁼¹ ∞ f'(x) = Σ x⁽ⁿ⁻¹⁾ ⁿ⁼¹ , which with shift of index becomes ∞ f'(x) = Σ x ⁿ ⁿ⁼⁰ The first term is 1 and the ratio between consecutive terms is x. The sum s of this geometric series is found as s = a / ( 1 - r ) = 1 / ( 1 - x ) This is the derivative of the desired function. Its antiderivative is f(x) = ∫ dx / ( 1 - x ) f(x) = - ln(1-x) By knowing ∞ Σ xⁿ/n = - ln(1-x) ⁿ⁼¹ we can replace x with i. 1-i in polar form using the Argand plane is (1-i) = √2 e⁻ⁱ ⷫᐟ⁴ The replacement of x by i gives us ∞ S = Σ iⁿ/n = - ln(1-i) ⁿ⁼¹ = - ln√2 + i π /4 = -½ ln 2 + ¼ i π answer S = -½ ln 2 + ¼ i π
@RealQinnMalloryu4
@RealQinnMalloryu4 4 күн бұрын
{i+i ➖ }+{i^2+i^2 ➖ }/{2i+2i ➖ }={i^2+i^4}/4i^2=i^6/4i^2+{i^3+i^3 ➖ }{3i+3i ➖ }={i^6/4i^2+i^6/6i^2}=i^12/10i^4+{i^4+i^4 ➖ }/{4i+4i ➖}={i^11/10i^4+i^8/8i^2 }=i^19/18i^6 +{i^5+i^5 ➖ }/{5i+5i ➖ }={i^19/18i^6+i^10/10i^2}=i^29/28i^8+{i^6+i^6 ➖ }/{6i+6In ➖ }={i^29/38i^8+i^12/12i^2}=i^^41/50i^10 i^12^29/12^38i^8 i^12^13^16/12^19^19i^8 i^6^6^13^8^8/6^6^9^10i^8 i^2^3^2^36^7^4^4/2^3^2^3^9^5^5i^4^4 i^1^1^1^1^6^3^4^2^2^2^2/1^1^1^13^2^2^3^2^3i^1^1 i^2^3^3^2^2^1^1^1^1/1^1^1^1^1^1i i^1^1^3^1^2/ i/3^2/ (i ➖ 3pi+2). I HAVE NEVER SEEN IMAGINARY INFINITY SUM BEFOR THAT IS INTERSET EDUCATIONAL INFORMATIVE VIDEO THANK YOU.
@kyugosan3010
@kyugosan3010 4 күн бұрын
Man, your videos are amazing!!! Although I have noticed that there has been some video delay with respect to the audio, it'd be cool if you fixed that
@aplusbi
@aplusbi 3 күн бұрын
Thank you! I'm working on it.
@rainerzufall42
@rainerzufall42 4 күн бұрын
i pi/4 - 1/2 ln 2 Nice calculation! Or you remember that 1 - 1/3 + 1/5 - 1/7 +... = pi/4 and 1 - 1/2 + 1/3 - 1/4 +... = ln 2 from Analysis I, the first with factor i, the second with 1/2 i^2 = -1/2.
@NadiehFan
@NadiehFan 4 күн бұрын
Your error with your first method is that you took arctan(b/a) to be π, this is incorrect. The arctangent of a real number is always on the open interval (−½π, ½π) whereas the principal argument of a nonzero complex number can have any value on the interval (−π, π]. This implies that arctan(b/a) only gives the principal argument for a complex number a + bi in the _right half_ of the complex plane.