Cube Root of A Complex Number | Problem 455

  Рет қаралды 1,242

aplusbi

aplusbi

Күн бұрын

Пікірлер: 16
@f5673-t1h
@f5673-t1h Ай бұрын
The meta approach would be to realize that the exam writers would not give you something too tedious, so a and b must be integers. We have that a(a^2 - 3b^2) + ib(3a^2-b^2) = 52 + 47i, so b is a divsor of 47, which is prime. It probably won't be 47, since the cube would be too big, so b must be 1. Solving for a quickly gives a = 4 (in both components, and you can also verify it afterwards), so 4+i is one solution, and then you multiply by the two other third roots of 1 to get the other solutions.
@NadiehFan
@NadiehFan Ай бұрын
How about this. At 7:30 you have a system (1) a³ − 3ab² = 52 (2) 3a²b − b³ = 47 and at 9:33 you found that | a + bi | = √17. But this implies (3) a² + b² = 17 From (3) we get b² = 17 − a² which we can substitute in (1) to get a³ − 3a(17 − a²) = 52 so (4) 4a³ − 51a − 52 = 0 Using the rational root theorem and by rewriting (4) as a(4a² − 51) − 52 = 0 and noting that for a positive solution we must have 4a² − 51 > 0 and therefore a > 3 we can find that a = 4 is a solution of (4) since (5) 4·4³ − 51·4 − 52 = 0 and subtracting (5) from (4) we have 4(a³ − 4³) − 51(a − 4) = 0 4(a − 4)(a² + 4a + 16) − 51(a − 4) = 0 (a − 4)(4a² + 16a + 64) − 51(a − 4) = 0 (a − 4)(4a² + 16a + 13) = 0 a − 4 = 0 ⋁ (2a + 4)² = 3 a = 4 ⋁ a = −2 + ½√3 ⋁ a = −2 − ½√3 So, we have three values for a, but evidently for the principal cube root we must have a > 0 because the principal value of the argument of a nonzero complex number is on the interval (−π, π] so the principal value of the argument of the principal cube root of a nonzero complex number is on the interval (−⅓π, ⅓π] and therefore in the right half of the complex plane. For a = 4 we get b = 1 ⋁ b = −1 but only (a, b) = (4, 1) satisfies (2) so ∛(52 + 47i) = 4 + i The other two complex numbers whose cube is 52 + 47i can obviously be found from a = −2 + ½√3 ⋁ a = −2 − ½√3 by substituting these values for a in (3) to get the corresponding values for b and checking in each case which of the two values of b satisfies (2). However, we can also simply multiply 4 + i by each of the complex cube roots of unity ω₁ = −½ + i·½√3 and ω₂ = −½ − i·½√3 to get (−½ + i·½√3)(4 + i) = (−2 − ½√3) + i·(− ½ + 2√3) (−½ − i·½√3)(4 + i) = (−2 + ½√3) + i·(− ½ − 2√3) as the other two complex numbers whose cube is 52 + 47i. As you can see, the real parts of these complex numbers are indeed the two negative solutions of equation (4).
@WindyNight114
@WindyNight114 Ай бұрын
Your videos are so cool. I really appreciate it. I took complex analysis back in college and I forgot so much. Thank you!
@aplusbi
@aplusbi Ай бұрын
Thanks for the kind words! 😄
@jorgeheyaime8810
@jorgeheyaime8810 Ай бұрын
Hello from Dominican Republic
@aplusbi
@aplusbi Ай бұрын
Hi there! 😀
@0over0
@0over0 Ай бұрын
hello!
@moeberry8226
@moeberry8226 Ай бұрын
The real way to obtain all 3 complex cube roots of that expression is to write it in polar form of the inside and then take the cube root so the radius is NOT 17root17 but rather just root17. And the angle will be reduced by a factor of 1/3. And then using integer values 0, 1 and 2 you will get all 3 cube roots. It’s no different then finding the cube roots of unity of z^3=57+42i.
@scottleung9587
@scottleung9587 Ай бұрын
I also got z=4+i.
@key_board_x
@key_board_x Ай бұрын
x = ³√(52 + 47i) x³ = 52 + 47i → we assume that: y³ = 52 - 47i ------------------------------------------------------sum x³ + y³ = 104 ← equation (1) x³y³ = (52 + 47i).(52 - 47i) x³y³ = (52)² - (47i)² x³y³ = 2704 - 2209i² → where: i² = - 1 x³y³ = 4913 x³y³ = 17³ xy = 17 (x + y)³ = (x + y)².(x + y) (x + y)³ = (x² + 2xy + y²).(x + y) (x + y)³ = x³ + x²y + 2x²y + 2xy² + xy² + y³ (x + y)³ = x³ + y³ + 3x²y + 3xy² (x + y)³ = x³ + y³ + (3x²y + 3xy²) (x + y)³ = x³ + y³ + 3xy.(x + y) → recall (2): xy = 17 (x + y)³ = x³ + y³ + 51.(x + y) → recall (1): x³ + y³ = 104 (x + y)³ = 104 + 51.(x + y) → let: u = x + y u³ = 104 + 51u u³ - 51u - 104 = 0 u = 8 → recall: u = x + y x + y = 8 → recall (2): xy = 17 → y = 17/x x + (17/x) = 8 (x² + 17)/x = 8 x² + 17 = 8x x² - 8x + 17 = 0 Δ = (- 8)² - (4 * 17) = 64 - 68 = - 4 = 4i² x = (8 ± 2i)/2 x = 4 ± i Let's check: x = 4 + i x³ = x².x x³ = (4 + i)².(4 + i) x³ = (16 + 8i + i²).(4 + i) → where: i² = - 1 x³ = (15 + 8i).(4 + i) x³ = 60 + 15i + 32i + 8i x³ = 60 + 47i - 8 x³ = 52 + 47i ← ok Let's check: x = 4 - i x³ = x².x x³ = (4 - i)².(4 - i) x³ = (16 - 8i + i²).(4 - i) → where: i² = - 1 x³ = (15 - 8i).(4 - i) x³ = 60 - 15i - 32i + 8i² x³ = 60 - 47i - 8 x³ = 52 - 47i ← rejected Solution = { (4 + i) }
@aplusbi
@aplusbi Ай бұрын
Wow! This is amazing 😍
@0over0
@0over0 Ай бұрын
wow.
@key_board_x
@key_board_x Ай бұрын
My answer is not complete, because there are 3 roots. Restart x = ³√(52 + 47i) x³ = 52 + 47i x³ - (52 + 47i) = 0 → recall the solution: ³√(52 + 47i) = (4 + i) x³ - (4 + i)³ = 0 → recall: a³ - b³ = (a - b).(a² + ab + b²) [x - (4 + i)].[x² + x.(4 + i) + (4 + i)²] = 0 First case: [x - (4 + i)] = 0 x - (4 + i) = 0 x = 4 + I ← first root Second case: [x² + x.(4 + i) + (4 + i)²] = 0 x² + x.(4 + i) + (4 + i)² = 0 Δ = (4 + i)² - 4.(4 + i)² Δ = - 3.(4 + i)² Δ = 3i².(4 + i)² x = [- (4 + i) ± i.(4 + i).√3]/2 First case: x = [- (4 + i) + i.(4 + i).√3]/2 x = [- 4 - i + (4i + i²).√3]/2 x = [- 4 - i + (4i - 1).√3]/2 x = [- 4 - i + 4i√3 - √3]/2 x = [- 4 - √3 - i + 4i√3]/2 x = [- (4 + √3) - i.(1 - 4√3)]/2 ← second root Second case: x = [- (4 + i) - i.(4 + i).√3]/2 x = [- 4 - i - (4i + i²).√3]/2 x = [- 4 - i - (4i - 1).√3]/2 x = [- 4 - i - 4i√3 + √3]/2 x = [- 4 + √3 - i - 4i√3]/2 x = [- (4 - √3) - i.(1 + 4√3)]/2 ← third root
@SidneiMV
@SidneiMV Ай бұрын
(a + bi)³ = 52 + 47i a³ + 3i²ab² = 52 => a³ - 3ab² = 52 3ia²b + i³b³ = 47i => 3a²b - b³ = 47 a³ + b³ - 3ab(a + b) = 5 a³ - b³ + 3ab(a - b) = 99
@giuseppemalaguti435
@giuseppemalaguti435 Ай бұрын
Se non sbaglio (52^2+47^2)(1/6)e^iarctg47/3*52)=4,1231e^i16,766
@jeanmariebergeron4759
@jeanmariebergeron4759 Ай бұрын
The angle i ie^i(arctg(47/52))/3
A Rational Equation | Problem 456
9:52
aplusbi
Рет қаралды 606
A Special Quadratic Equation | Problem 479
12:30
aplusbi
Рет қаралды 279
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН
Simple Explanation of the Birthday Paradox
12:11
Wrath of Math
Рет қаралды 774 М.
Every Proof that 0.999 equals 1 but they get increasingly more complex
17:42
Cube Root of Unity
12:09
Prime Newtons
Рет қаралды 16 М.
An Interesting Exponential Equation | Problem 457
11:05
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 422 М.
Why You Can't Bring Checkerboards to Math Exams
21:45
Wrath of Math
Рет қаралды 476 М.
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН
What are complex numbers? | Essence of complex analysis #2
32:11
Mathemaniac
Рет қаралды 239 М.
What REALLY is e? (Euler’s Number)
23:18
Foolish Chemist
Рет қаралды 125 М.
Extending the Harmonic Numbers to the Reals
15:17
Lines That Connect
Рет қаралды 350 М.