12 years later still helping students. Awesome video.
@rezah3369 ай бұрын
i just place all closed loop poles on the negative real axis to get no overshoot and adjust the speed by moving it along the axis. The speed is determined by the control signal.
@darkside3ng Жыл бұрын
Amazing work!!!!
@youssefabsi6296 Жыл бұрын
that was reaaally good. thanks
@brucemurdock5358 Жыл бұрын
By far the best teacher for control systems and linear algebra (2nd one is arguable haha)
@thiagoXXXmarinho2 жыл бұрын
A question, do you still calculate u = kx? X hat I would imagine...
@salvatoregiordano68162 жыл бұрын
Excellent explanation! Thank you!
@aissalamin95282 жыл бұрын
hey sir, did you bought that helical propeller swimmer or you just made ? i need an answer asap please
@Jnglfvr3 жыл бұрын
At 26:58 the laplace transform of exp(a*t) = 1/(s - a) not 1/(s + a) the former of which makes the analogy exact.
@Jnglfvr3 жыл бұрын
Crystal clear explanation. Puts other expositions to shame.
@evanparshall13233 жыл бұрын
Wow this video was incredible. Thank you!!!
@taojunwang79653 жыл бұрын
Thank you, this video really helps me with the understanding
@DeepIntelAcademy3 жыл бұрын
perfect, thank you
@yasir99093 жыл бұрын
Do you have any lectures on Stochastic MPC and Optimization?
@yasir99093 жыл бұрын
Your lectures are really very useful and easy to follow because of the effective way of conveying concepts...
@midhurammanoj9313 жыл бұрын
Great! It's so intuitive!!! Thank You
@mikkodetorres29363 жыл бұрын
May I know Doc your references?
@pizarrowrc47173 жыл бұрын
nice video
@klam773 жыл бұрын
WOW ....clarity. i was also hoping for some intuition why they call it LQR! Basic math analysis says LQ is where you solve a quadratic ("Q") to meet a Linear ("L") constraint, but i don't see how that ties to Riccatti etc.....but otherwise you're video is TOPS!
@klam773 жыл бұрын
oop! I see it now. It's the same: a quadratic cost function (incorporating input and state) subject to linear (proportional to state) input! Linear-Quad.
@p.georgiou72713 жыл бұрын
Thanks, explanations in german about this topic are terrible
@pedroserrano77203 жыл бұрын
This channel has some really good content!!
@giancarlokuosmanen97233 жыл бұрын
Awesome lecture, thanks!
@bilalsadiq34953 жыл бұрын
Dr.Why didn't you use MATLAB to teach this stuff????
@quantabot11653 жыл бұрын
this is how people teach.
@yeboutix58983 жыл бұрын
hello Do you know how to make a state feedback (for a pole placement) when I have in the system some state variables that are not controllable ? I know i must take only the controlable AND the observable state but i don't know how to convert the input for the real system.
@mohamedelaminenehar3333 жыл бұрын
😄 ترجم ترجم
@quantabot11653 жыл бұрын
Professor, your teaching skills is amazing.
@quantabot11653 жыл бұрын
this is gold
@allandogreat4 жыл бұрын
very gooooood
@allandogreat4 жыл бұрын
very good
@allandogreat4 жыл бұрын
pretty clear
@allandogreat4 жыл бұрын
Pretty Good...
@vashistnarayansingh59954 жыл бұрын
Suppose i am using kalman on time series data and I want a 60 day window then putting T = 60 does my job or is there any other way for this ?
@spartanarmado4 жыл бұрын
Very usefull! thaks!
@giack62354 жыл бұрын
Hello, thank you very much for these crystal clear lessons. Could you please tell me why should we can assume that x(0) is zero during Laplace transformation? x(0) seems to be just an external starting point, like for example initial energy stored in the system for some reason, how can we impose this is zero?
@olcay52424 ай бұрын
Lets say your system at initial conditions and you calculated output to this system with given input. then you would calculate the output of the system with non zero conditions without presence of input. Then when you sum two of these outputs so that you get the output of a system with non zero conditions and given output. Your system has to be linear of course. Exploiting linearity in that way makes your life easier with laplace transform.
@bashhau5 жыл бұрын
Love this video. The best I've seen so far
@KorraAndVaatu5 жыл бұрын
I have spent multiple days trying to understand Jordan form. This was the only explanation that made sense to me. Thank you!
@pnachtwey5 жыл бұрын
+1 for saying zeros can cause overshoot even though the closed loop poles are on the negative real axis in the s domain. So now the problem changes from guessing where to put the closed loop poles to guessing on how to chose the weights. It seems like there needs to be yet another level of optimization to select the best weights for Q and R. It seems there are many possibilities for optimal or the term optimal is used loosely. Saturation isn't as big a problem as feedback resolution. BTW, it is possible to place zeros too.
@RootCSGO5 жыл бұрын
The only clear explanation i could find on KZbin
@MrPepto935 жыл бұрын
Isn't P being calculated by algebraic Ricatti equation?
@fxprimex5 жыл бұрын
Great example Thank you krub.
@Muan825 жыл бұрын
I still didn't understand why we need to use 1 above diagonal terms in Jordan blocks for the same eigenvalues
@deadoralivecowboy14015 жыл бұрын
9:50
@Tiagocoelhom5 жыл бұрын
great explanation. Thank you so much
@JadtheProdigy5 жыл бұрын
From a high level point of view, you give the LQR controller a trajectory X from 0:T, and a cost for trajectory deviation Q, a cost for effort R, and it returns the effort U from 0:T, as well as Xnew 0:T, such that the dynamic constraints are met, while J is minimized? In other words, X and Xnew may be different?
@dEaMoNiFiEr5 жыл бұрын
This is so underrated
@ink24675 жыл бұрын
Thank you! I couldn't understand what the generalized eigenvectors were, and no tutorial mentions that. They just talk about how a Jordan matrix looks. xd But this explained it perfectly!
@levels19375 жыл бұрын
The most clear explanation of this I have ever heard! Thank you !
@OfficialDjn0size6 жыл бұрын
SCON é pra meninos assim bambore
@ebrimakuyateh3946 жыл бұрын
well explained tutorial thank u
@dariowirtz6 жыл бұрын
excellent work, thank you
@p.z.83556 жыл бұрын
So how would I change the control law to make it a tractor instead of regulator ?