Manual vs. Robotic Retinal Surgery
2:03
Precision Micromanipulation
0:30
9 жыл бұрын
MICCAI 2015 - Nambi et al.
5:00
9 жыл бұрын
MM3A SimulatedRateControl
0:28
12 жыл бұрын
MM3A JointVsRateControl
0:21
12 жыл бұрын
Пікірлер
@MrSqueakinator
@MrSqueakinator 2 ай бұрын
12 years later still helping students. Awesome video.
@rezah336
@rezah336 9 ай бұрын
i just place all closed loop poles on the negative real axis to get no overshoot and adjust the speed by moving it along the axis. The speed is determined by the control signal.
@darkside3ng
@darkside3ng Жыл бұрын
Amazing work!!!!
@youssefabsi6296
@youssefabsi6296 Жыл бұрын
that was reaaally good. thanks
@brucemurdock5358
@brucemurdock5358 Жыл бұрын
By far the best teacher for control systems and linear algebra (2nd one is arguable haha)
@thiagoXXXmarinho
@thiagoXXXmarinho 2 жыл бұрын
A question, do you still calculate u = kx? X hat I would imagine...
@salvatoregiordano6816
@salvatoregiordano6816 2 жыл бұрын
Excellent explanation! Thank you!
@aissalamin9528
@aissalamin9528 2 жыл бұрын
hey sir, did you bought that helical propeller swimmer or you just made ? i need an answer asap please
@Jnglfvr
@Jnglfvr 3 жыл бұрын
At 26:58 the laplace transform of exp(a*t) = 1/(s - a) not 1/(s + a) the former of which makes the analogy exact.
@Jnglfvr
@Jnglfvr 3 жыл бұрын
Crystal clear explanation. Puts other expositions to shame.
@evanparshall1323
@evanparshall1323 3 жыл бұрын
Wow this video was incredible. Thank you!!!
@taojunwang7965
@taojunwang7965 3 жыл бұрын
Thank you, this video really helps me with the understanding
@DeepIntelAcademy
@DeepIntelAcademy 3 жыл бұрын
perfect, thank you
@yasir9909
@yasir9909 3 жыл бұрын
Do you have any lectures on Stochastic MPC and Optimization?
@yasir9909
@yasir9909 3 жыл бұрын
Your lectures are really very useful and easy to follow because of the effective way of conveying concepts...
@midhurammanoj931
@midhurammanoj931 3 жыл бұрын
Great! It's so intuitive!!! Thank You
@mikkodetorres2936
@mikkodetorres2936 3 жыл бұрын
May I know Doc your references?
@pizarrowrc4717
@pizarrowrc4717 3 жыл бұрын
nice video
@klam77
@klam77 3 жыл бұрын
WOW ....clarity. i was also hoping for some intuition why they call it LQR! Basic math analysis says LQ is where you solve a quadratic ("Q") to meet a Linear ("L") constraint, but i don't see how that ties to Riccatti etc.....but otherwise you're video is TOPS!
@klam77
@klam77 3 жыл бұрын
oop! I see it now. It's the same: a quadratic cost function (incorporating input and state) subject to linear (proportional to state) input! Linear-Quad.
@p.georgiou7271
@p.georgiou7271 3 жыл бұрын
Thanks, explanations in german about this topic are terrible
@pedroserrano7720
@pedroserrano7720 3 жыл бұрын
This channel has some really good content!!
@giancarlokuosmanen9723
@giancarlokuosmanen9723 3 жыл бұрын
Awesome lecture, thanks!
@bilalsadiq3495
@bilalsadiq3495 3 жыл бұрын
Dr.Why didn't you use MATLAB to teach this stuff????
@quantabot1165
@quantabot1165 3 жыл бұрын
this is how people teach.
@yeboutix5898
@yeboutix5898 3 жыл бұрын
hello Do you know how to make a state feedback (for a pole placement) when I have in the system some state variables that are not controllable ? I know i must take only the controlable AND the observable state but i don't know how to convert the input for the real system.
@mohamedelaminenehar333
@mohamedelaminenehar333 3 жыл бұрын
😄 ترجم ترجم
@quantabot1165
@quantabot1165 3 жыл бұрын
Professor, your teaching skills is amazing.
@quantabot1165
@quantabot1165 3 жыл бұрын
this is gold
@allandogreat
@allandogreat 4 жыл бұрын
very gooooood
@allandogreat
@allandogreat 4 жыл бұрын
very good
@allandogreat
@allandogreat 4 жыл бұрын
pretty clear
@allandogreat
@allandogreat 4 жыл бұрын
Pretty Good...
@vashistnarayansingh5995
@vashistnarayansingh5995 4 жыл бұрын
Suppose i am using kalman on time series data and I want a 60 day window then putting T = 60 does my job or is there any other way for this ?
@spartanarmado
@spartanarmado 4 жыл бұрын
Very usefull! thaks!
@giack6235
@giack6235 4 жыл бұрын
Hello, thank you very much for these crystal clear lessons. Could you please tell me why should we can assume that x(0) is zero during Laplace transformation? x(0) seems to be just an external starting point, like for example initial energy stored in the system for some reason, how can we impose this is zero?
@olcay5242
@olcay5242 4 ай бұрын
Lets say your system at initial conditions and you calculated output to this system with given input. then you would calculate the output of the system with non zero conditions without presence of input. Then when you sum two of these outputs so that you get the output of a system with non zero conditions and given output. Your system has to be linear of course. Exploiting linearity in that way makes your life easier with laplace transform.
@bashhau
@bashhau 5 жыл бұрын
Love this video. The best I've seen so far
@KorraAndVaatu
@KorraAndVaatu 5 жыл бұрын
I have spent multiple days trying to understand Jordan form. This was the only explanation that made sense to me. Thank you!
@pnachtwey
@pnachtwey 5 жыл бұрын
+1 for saying zeros can cause overshoot even though the closed loop poles are on the negative real axis in the s domain. So now the problem changes from guessing where to put the closed loop poles to guessing on how to chose the weights. It seems like there needs to be yet another level of optimization to select the best weights for Q and R. It seems there are many possibilities for optimal or the term optimal is used loosely. Saturation isn't as big a problem as feedback resolution. BTW, it is possible to place zeros too.
@RootCSGO
@RootCSGO 5 жыл бұрын
The only clear explanation i could find on KZbin
@MrPepto93
@MrPepto93 5 жыл бұрын
Isn't P being calculated by algebraic Ricatti equation?
@fxprimex
@fxprimex 5 жыл бұрын
Great example Thank you krub.
@Muan82
@Muan82 5 жыл бұрын
I still didn't understand why we need to use 1 above diagonal terms in Jordan blocks for the same eigenvalues
@deadoralivecowboy1401
@deadoralivecowboy1401 5 жыл бұрын
9:50
@Tiagocoelhom
@Tiagocoelhom 5 жыл бұрын
great explanation. Thank you so much
@JadtheProdigy
@JadtheProdigy 5 жыл бұрын
From a high level point of view, you give the LQR controller a trajectory X from 0:T, and a cost for trajectory deviation Q, a cost for effort R, and it returns the effort U from 0:T, as well as Xnew 0:T, such that the dynamic constraints are met, while J is minimized? In other words, X and Xnew may be different?
@dEaMoNiFiEr
@dEaMoNiFiEr 5 жыл бұрын
This is so underrated
@ink2467
@ink2467 5 жыл бұрын
Thank you! I couldn't understand what the generalized eigenvectors were, and no tutorial mentions that. They just talk about how a Jordan matrix looks. xd But this explained it perfectly!
@levels1937
@levels1937 5 жыл бұрын
The most clear explanation of this I have ever heard! Thank you !
@OfficialDjn0size
@OfficialDjn0size 6 жыл бұрын
SCON é pra meninos assim bambore
@ebrimakuyateh394
@ebrimakuyateh394 6 жыл бұрын
well explained tutorial thank u
@dariowirtz
@dariowirtz 6 жыл бұрын
excellent work, thank you
@p.z.8355
@p.z.8355 6 жыл бұрын
So how would I change the control law to make it a tractor instead of regulator ?