Wow. This was great! None of my professors at MIT have been able to teach this physical intuition. Thanks so much!
@smilesmile7879 жыл бұрын
+Tyler Hamer yes, his example was very straight forward
@mkhalil0074 жыл бұрын
OoOo
@venkr17288 жыл бұрын
Brilliant! A good teacher explains the complexity of a problem, but a great teacher simplifies a complex problem. This is an example of great teaching..
@ozyozk94667 жыл бұрын
Hands down the best LQR tutorial I have ever seen.
@magdiyouseff46616 жыл бұрын
its the first time i understand the reason behind creation the objective function J. thank you for your clear explanation. thank you
@christophberger5997 жыл бұрын
Really nice video, studying in vienna and did not get an idea how exactly the LQR worked, but now i understand. Thank you.
@imanplus12 жыл бұрын
Thanks Dr. Abbott. That was the best explanation for LQR I've ever seen. Keep it up.
@rezah3369 ай бұрын
i just place all closed loop poles on the negative real axis to get no overshoot and adjust the speed by moving it along the axis. The speed is determined by the control signal.
@cainghorn8 жыл бұрын
Speaking as a Msc in automation, I have never had someone explain this to me so clearly. Why would you ever go to a university, with pearls like these found on YT?:)
@brucemurdock5358 Жыл бұрын
By far the best teacher for control systems and linear algebra (2nd one is arguable haha)
@_electro_1019 жыл бұрын
Very well explained. I happened to see a general case of choosing R=1 and Q=C`C (c transpose*c). If so, Why?
@alial-heji32829 жыл бұрын
Thank you for posting this. Very easy to follow and understand.
@luzltorai8 жыл бұрын
That is a great video. Thank Dr. Jake Abbott
@giuseppealmontelalli8408 жыл бұрын
please make a video on LQG CONTROL
@ericwindhede593712 жыл бұрын
Thank you. Very nice way to introduce LQR. I´m looking forward to see you talking about Kalman Filter next. :)
@salmann947 жыл бұрын
One of the best explanations for the topic. Thank you!
@guangweiwang92287 жыл бұрын
Great physical intuition, thank you.
@JadtheProdigy5 жыл бұрын
From a high level point of view, you give the LQR controller a trajectory X from 0:T, and a cost for trajectory deviation Q, a cost for effort R, and it returns the effort U from 0:T, as well as Xnew 0:T, such that the dynamic constraints are met, while J is minimized? In other words, X and Xnew may be different?
@sumitshrestha26538 жыл бұрын
Thank you! Sir. Can you upload a lecture on Parameter estimation: Batch least square, constrained least square and sequential least square?
@vksateesh8 жыл бұрын
Very good explanation sir. Thank you.
@georgevarghese58877 жыл бұрын
This was vry well explained.. i need to know how can we use abc algorithm to decide the Q and R parameters..
@HarishKumar-gw8bz7 жыл бұрын
Well, you can use the pso algorithm, which is quite easy to apply compared to the abc one.
@devkumanan17739 жыл бұрын
Great video, very well explained and easy to follow ! Thank you.
@EricLikesTurtles9 жыл бұрын
Thanks for posting this. Very clear and helpful. Question: How do I select Q when one or more states is not observable, but is stable? For example, suppose the speed of a DC motor (generalized as a stable, first-order system with known dynamics and a voltage input) is itself the control input to a fully controllable, linear system. Furthermore, suppose that for whatever reason, the motor speed is not observable. When I append the the motor dynamics to the system, I now have an additional stable but unobservable state. Since I cannot measure the speed of the motor, I ultimately should have a feedback gain of zero that corresponds to motor speed. I assume that for the Q matrix, I would set the q term corresponding to the motor speed to zero. Is this correct? Thanks for your time.
@25aaditya7 жыл бұрын
This is so amazing. thank you so much for a clear explanation of LQR
@giancarlokuosmanen97233 жыл бұрын
Awesome lecture, thanks!
@kaizhou73318 жыл бұрын
Very good explanation to a starter
@mohamadmawed60787 жыл бұрын
Your explanation is really amazing . Thanks a lot sir .
@thibaultcantou35089 жыл бұрын
Thanks a lot for those very clear explanations !
@mohamadmawed60787 жыл бұрын
Amazing and great explanation sir
@dedenmusa12 жыл бұрын
Thanks Dr. Abbott. Greeting from Indonesia.
@psjacome10 жыл бұрын
Thanks a lot for your tutorial. In the lecture you said it is necessary to simulate the system in order to choose Q and R values, Do you have some examples of simulations in Matlab??
@jalpeshlimbola39587 жыл бұрын
have you got the solution of choosing the values of Q and R?
@p.z.83556 жыл бұрын
So how would I change the control law to make it a tractor instead of regulator ?
@PronoyBiswas11 жыл бұрын
Excellent video - very well explained
@mohamedessamish8 жыл бұрын
a question plz if system is assym. stable and input excites a system then inputvanishes my question is will the states of sytem vanishes and what will happen to the output will it also vanishes ??? thanks for ur respond in advance
@eatctitox11 жыл бұрын
Great explanation! I really appreciate you having a practical approach to explain the details... Super like!
@AN-zk7kz6 жыл бұрын
Many thanks for the great video ! I would like to ask about the name of the method you followed to initialize the values of Q and R i.e. when you chose to start with the square of the maximum value inverse. Many thanks in advance !
@antoniomdn10 жыл бұрын
Thank you very much for the tutorial, it explains it very clearly.
@zyot51110 жыл бұрын
Thanks from Colombia. I really like your videos!
@cendit4209 жыл бұрын
Thank you for the explanation, very helpful.
@luisdamed8 жыл бұрын
Thank you!
@klam773 жыл бұрын
WOW ....clarity. i was also hoping for some intuition why they call it LQR! Basic math analysis says LQ is where you solve a quadratic ("Q") to meet a Linear ("L") constraint, but i don't see how that ties to Riccatti etc.....but otherwise you're video is TOPS!
@klam773 жыл бұрын
oop! I see it now. It's the same: a quadratic cost function (incorporating input and state) subject to linear (proportional to state) input! Linear-Quad.
@bruno_sjc_8 жыл бұрын
You rock! What a clear explanation! Thank you very much!
@kokorot177 жыл бұрын
Thanks Sir.. you made my life a bit easier!
@Pi314159265ify10 жыл бұрын
Great tutorial, thank you very much!
@Sasipano11 жыл бұрын
thanks for a great introduction.... Moreover, I was curious of using it for my Inverted Pendulum Project.... So can you help me with that
@bilalahmad-qo4wk11 жыл бұрын
I think that I can help you, what kind of problem are you facing?
@alonealonesupervisor5378 жыл бұрын
+bilal ahmad brother do you have the textbook of this course
@youssefabsi6296 Жыл бұрын
that was reaaally good. thanks
@versatran0112 жыл бұрын
Nice video! Explains everything clearly! Great job!
11 жыл бұрын
Gave me help big time with my project topic, thumbs up!
@bobanisback7 жыл бұрын
Thank you
@BereketAbraham9 жыл бұрын
This video is amazing! Keep it up!
@ahmadfariz71736 жыл бұрын
Thank you, sir!
@bhaskartushar906 жыл бұрын
Great explained...
@multimirage9 жыл бұрын
Well Said!
@isaacsilva963112 жыл бұрын
you are the best man. thanks very much from brazil.
@viktorsawtschenko44011 жыл бұрын
Very nice video!
@dmitriymakovkin11 жыл бұрын
Super! Clear & concise, thank you.
@mohamadballout38476 жыл бұрын
WOOOOWWWW!! Awesome!
@lionconvoy86228 жыл бұрын
very clear explanation! thanks! :)
@Missionary1178 жыл бұрын
Wow.. that was very good.
@wszolasss10 жыл бұрын
SOOO HELPFUL! THANK YOU!
@pnachtwey5 жыл бұрын
+1 for saying zeros can cause overshoot even though the closed loop poles are on the negative real axis in the s domain. So now the problem changes from guessing where to put the closed loop poles to guessing on how to chose the weights. It seems like there needs to be yet another level of optimization to select the best weights for Q and R. It seems there are many possibilities for optimal or the term optimal is used loosely. Saturation isn't as big a problem as feedback resolution. BTW, it is possible to place zeros too.
@ameerjanabi91710 жыл бұрын
awesome
@Larantas8 жыл бұрын
Wonderful. Thank you :)
@LuisRocha210 жыл бұрын
Great tutorial, keep it up x)
@spartanarmado4 жыл бұрын
Very usefull! thaks!
@salmansircar56069 жыл бұрын
Thanks your explanation was very helpful
@zoro1984011 жыл бұрын
Really thankful .. (y)
@LNasterio6 жыл бұрын
This is when you realize professors from some top end universities are JOKE!
@manofsteeeeel-j1g4 жыл бұрын
+1
@klam773 жыл бұрын
well....they are just too comfortable with abstraction and leap ahead too quickly.....but to beginners it appears there are NO anchors in the material!
@jalpeshlimbola39587 жыл бұрын
theoretical understanding is ok and but the major problem about LQR method is that how to decide the perfect value of the matrix Q and R for to implement in the real physical system. if any one does know please let me know..thanks..!!
@niteshagrawal4867 жыл бұрын
it depends on the system you are considering. Though main idea is to minimize or maximize J
@brianblasius3 жыл бұрын
Use Bryson's rule. But this only gives you a starting point. So after using the rule, you can fine tune by hand.