MISTAKES: Q23 should be False. For example v1 is the zero vector and v2, v3 are any two orthogonal non zero vectors. Good luck studying for you Linear Algebra Final! Check out my Linear Algebra playlist for more practice problems! kzbin.info/aero/PLscpLh9rN1Rfo0ifw9RZFoJ2Te2jk_pwX
@davidmurphy563 Жыл бұрын
Q28. Does a diagonal matrixv with non-zero components scale. You said true but it could be the identity matrix in which case B is left unchanged/unscaled.
@DrWeselcouch Жыл бұрын
@@davidmurphy563 Good point. I personally would call that scaling by a factor of 1.
@davidmurphy563 Жыл бұрын
@@DrWeselcouch That's exactly what I was told when I last asked for a raise. ;)
@DrWeselcouch Жыл бұрын
@@davidmurphy563 sounds like we might have the same boss!
@davidmurphy563 Жыл бұрын
@@DrWeselcouch Last night's discussion with my teenage son on this went like this: Me: If you scale a number by 1 so that it doesn't change, are you actually scaling it? Son: Yeah. Me: So if you rotate something by zero degrees, then that's a rotation? Son: If you rotate something by 360 degrees, is that a rotation? Me: I concede the argument.
@blackpenredpen4 жыл бұрын
This is going to be insanely helpful! I will recommend my former students to watch this since I don't teach linear algebra myself and haven't done it for over a decade. I will also watch it to review it for myself. Thank you!
@blackpenredpen4 жыл бұрын
@@DrWeselcouch I am sure plenty!
@hugopelegrin36933 жыл бұрын
You were here way before, thank you for discovering me this channel, bprp
@warguy6474 Жыл бұрын
legend
@jaxrevfi13094 жыл бұрын
This is great! I’m sure that this will go viral, and I would love to see this for Calculus too! Keep up the great videos! :)
@neilbhutada96664 жыл бұрын
This going to help students at UW-Madison because our mid-terms only consist of 10 T/F questions.
@DrWeselcouch4 жыл бұрын
Good luck!
@jakekatsikas7214 жыл бұрын
Really appreciate all the hard work you're putting in!! Really helpful stuff!
@mathmylife9824 жыл бұрын
Such creative content Mike B!
@eminbaybarstimurstudent38023 жыл бұрын
I have a question on 82nd question, on 56:09, so what if our matrix is an orthogonal matrix, then A^T would be equal to A^-1, and the eigenvalues of A^-1 is 1/ λ. So wouldn't our eigenvalues change in this case ?
@DrWeselcouch3 жыл бұрын
Nope! That just implies that the real eigenvalues of orthogonal matrices are plus or minus 1.
@eminbaybarstimurstudent38023 жыл бұрын
@@DrWeselcouch Right, I forgot that, thank you for answering and for this great content :)
@DrWeselcouch3 жыл бұрын
@@eminbaybarstimurstudent3802 No problem! Good luck studying for Linear!
@drpeyam4 жыл бұрын
Omgggg, how did you do 109 linear algebra true false questions in less than 75 mins 😂😂😂 I did 111 in more than 4 hours 😂😂😂
@JiaxiWang-n8z11 ай бұрын
how lovely to see u here
@Andrew-jw2qs4 жыл бұрын
THIS IS AMAZING THANK YOU
@DrWeselcouch4 жыл бұрын
No problem! Feel free to share it with your classmates too :)
@timonau2443 жыл бұрын
This is very helpful, thank you
@yashmane134 жыл бұрын
Thank you so much! This is a very helpful resource
@DrWeselcouch4 жыл бұрын
Great! Good luck studying for linear!
@mathematicalpoetry69024 жыл бұрын
Q23 in my opinion should be False, for example v1 is the zero vector and v2, v3 are any two orthogonal non zero vectors.
@DrWeselcouch4 жыл бұрын
You're right, the question should say that v1, v2, v3 are nonzero.
@jollux80357 ай бұрын
using this an hour before my final, legendary stuff here
@moabdul-7 ай бұрын
did it help?
@jollux80357 ай бұрын
@@moabdul- yea i got all my theory problems right, i take computational so it wasn’t as bad, but really good for studying
@moabdul-7 ай бұрын
@@jollux8035 sounds good, thanks man
@emilieholiday6062 ай бұрын
Thank you!
@owen000624 жыл бұрын
Q62. The statement is true if A is in echelon form. It is not only true if A is in echelon form; consider A = [1, 0; 1, 1].
@DrWeselcouch4 жыл бұрын
I don't think I follow. Wouldn't the rows of that matrix would form a basis for Row A?
@owen000624 жыл бұрын
@@DrWeselcouch Yes, and that matrix isn't in echelon form. Hence the rows of A are a basis for Row A if A is in echelon form, but not only if A is in echelon form.
@owen000624 жыл бұрын
Just to be clear, the statement by itself is false; the counterexample you gave shows that clearly. I was just questioning whether "This is only true if A is in echelon form" holds.
@DrWeselcouch4 жыл бұрын
@@owen00062 Ahh I see, at first I thought the matrix you wrote was a 1x4 matrix not a 2x2 matrix. My mistake!
@DrWeselcouch4 жыл бұрын
@@owen00062 You're right! The word "only" should not be there! "It's true if..." is what I should have said.
@jasonbroadway8027Ай бұрын
Scenario: Suppose that you used the phrase "ONLY the trivial solution" in Question 10. My reasoning would indicate that such a statement would be true. The word "ONLY" changes the problem. You were right, but I like to stray from the beaten path to test my knowledge.
@balasavenedintulashabalbeoriwe Жыл бұрын
Thank you professor. I have a wonder about the question 12. You say that this would be true if A had a pivot position in every column. Do you mean every column as well as row? Because for example A = [1, 0; 0,1; 0,0] has a pivot in every column but b = (0,0,1) (a vector in R^3) has no solution, yes? Or is the question saying, if there is a solution, it must be unique?
@DrWeselcouch Жыл бұрын
You're right, I should have said row and column. Assuming there's a solution, then what I said is correct, but that's a slightly different question.
@daray213 жыл бұрын
i have a question on #56, isn't the 2nd column in the example linearly dependent to the first column?
@DrWeselcouch3 жыл бұрын
Sure, but the first column is a pivot column. There is only one non-pivot column in the example so it's automatically LI with itself.
@sakhiwosekunqobadlamini15932 жыл бұрын
Could we get a calculus video that's just like this one please🙏🙏🙏🙏😭
@battlemode4 жыл бұрын
Nice video. I'd prefer if there was a slightly longer pause between asking the questions and showing the answer, even a second longer, so I have time to pause and consider it before you reveal the solution.
@DrWeselcouch4 жыл бұрын
Thanks for the feedback! I'll keep that in mind for my next T/F video. There is a PDF with all the questions in the description if you want to try the questions before watching the video.
@ksaigon4 жыл бұрын
you're a legend
@CuteLittleHen4 жыл бұрын
Question three is confusing, because what if the field is not infinite, such as field Z7?
@DrWeselcouch4 жыл бұрын
Good point. You should assume that every question is referring to matrices with real entries unless stated otherwise.
@Aeldrion3 жыл бұрын
Q23 is wrong, right? v1 could be 0, v2 wouldn't be a multiple of v1, you can take v3 linearly independent of v2, and {v1, v2, v3} wouldn't be linearly independent?
@DrWeselcouch3 жыл бұрын
You're right. It should say that the vectors are nonzero.
@jerryzhang2548Ай бұрын
1:01:51
@DrWeselcouchАй бұрын
Hmmmm
@petersmith91383 жыл бұрын
Interesting
@DrWeselcouch3 жыл бұрын
Interesting indeed... 🤔
@aashsyed12773 жыл бұрын
Very very very very very very very nicely 😀😀😀😀🥰
@tho_norlha4 жыл бұрын
Thank you, we will have 20 true false and 20 mcq in this final exam 😁 happy new year
@DrWeselcouch4 жыл бұрын
Good luck! I'm sure this video will be very helpful to you then!
@xbz24 Жыл бұрын
Tysm
@swartzsteinswartzstein88093 жыл бұрын
i have to go over a bunch of these lol
@DrWeselcouch3 жыл бұрын
Are you taking linear algebra this year?
@swartzsteinswartzstein88093 жыл бұрын
@@DrWeselcouch next semester!
@DrWeselcouch3 жыл бұрын
@@swartzsteinswartzstein8809 This is a great way to prepare!
@DivyanshMMMUT3 жыл бұрын
Coming from BlackPenRedPen
@DrWeselcouch3 жыл бұрын
Awesome! Hope you stay for a while!
@JMac___ Жыл бұрын
I think question 103 is wrong by definition, need c1,c2 to be non-zero
@DrWeselcouch Жыл бұрын
I think it's correct. The zero vector is orthogonal to everything and the set of just the zero vector is an orthogonal set.
@JMac___ Жыл бұрын
@@DrWeselcouch sorry, my textbook defines orthogonal set as a set of non zero vectors such that they’re pairwise orthogonal. That’s why I am confused. Thanks for the reply 👍