12. Clustering

  Рет қаралды 307,500

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

Пікірлер: 120
@leixun
@leixun 4 жыл бұрын
*My takeaways:* 1. DIstance 9:30 2. k-means algorithm 17:03 - How to choose k 23:57 - Unlucky initial centroids 25:56 - An example 28:58 - Scale data into the same range 37:11
@adiflorense1477
@adiflorense1477 4 жыл бұрын
thank you
@leixun
@leixun 4 жыл бұрын
@@adiflorense1477 you’re welcome
@wajihaliaquat3365
@wajihaliaquat3365 11 ай бұрын
Professor gifting the ones who contribute to this lecture. Loved that👏💝
@RaviShankar-vd8en
@RaviShankar-vd8en 4 жыл бұрын
The explanation level of this video is by far the best I have ever watched. Prof. Guttag does a very good job in explaining every concept more clearly.
@handang9165
@handang9165 4 жыл бұрын
I cant believe I am binge watching MIT lectures. I wish I had a chance to attend MIT back then.
@johnwig285
@johnwig285 2 жыл бұрын
Same! But feels great that we get all this for free, its a privilege
@MrSrijanb
@MrSrijanb 7 жыл бұрын
it just struck me, after all these lecture videos, that professor Guttag is actually using a classic positive reinforcement technique to make the students more attentive and responsive in class by giving out candies for correct answer. lol! and i am not sure if its the result of this or something else but the students seem wayyy too eager to answer questions in this paticular lecture video!
@RogerBarraud
@RogerBarraud 5 жыл бұрын
It's Skinner all the way down ;-)
@5Gazto
@5Gazto 5 жыл бұрын
I do it in my classes too.
@why400
@why400 4 жыл бұрын
I bet he would reward any good try - not just correct answers
@isbestlizard
@isbestlizard 4 жыл бұрын
6.006 they gave out cushions for good answers cos the benches were hard.. got the carrot and stick going on at MIT XD
@sardorniyozov8843
@sardorniyozov8843 2 жыл бұрын
Sheldon would approve
@jorgebjimenez3752
@jorgebjimenez3752 5 жыл бұрын
K-Means at16.30: one of the very best algorithms in IA
@NoOne-uz4vs
@NoOne-uz4vs 4 жыл бұрын
Thanks
@matheusbarros8488
@matheusbarros8488 2 жыл бұрын
When we are clustering the airports, the professor only stopped to think about linkage when he arrived at Denver. Shouldn't we have thought about it since the beginning of the clustering? If so, we could have gotten (BOS, SF) instead of (BOS, NY) for the first iteration using complete linkage.
@McAwesomeReaper
@McAwesomeReaper Жыл бұрын
Since in the first iteration there are a number of clusters equal to the number of cities, wouldnt complete linkage be the same as single linkage, given there is only one point of measurement for each cluster? I didnt go back to check, but perhaps after the second iteration there wouldve been some different answers?
@dontusehername
@dontusehername 7 жыл бұрын
I wish I get the opportunity to sit in a class at MIT someday! Such brilliant minds
@JamBear
@JamBear 3 жыл бұрын
You're just as smart as everyone in the audience. The profs have been doing this for decades.
@ai.simplified..
@ai.simplified.. 3 жыл бұрын
so enjoy your sit
@aneedfortheory
@aneedfortheory 2 жыл бұрын
Yeah, making a habit at doing something for an extended period creates excellence. Just stick at.
@vidhantt
@vidhantt 8 ай бұрын
29:06 Isn’t the heart attack example a case of supervised learning, since we have the labels? 1:59 At the start of the lecture, the professor mentioned clustering as an example of unsupervised learning
@newbie8051
@newbie8051 2 жыл бұрын
Great lecture ! I attended the Clustering lecture by prof Ayan Seal today (even though I dont have the course : Introduction to Data Science) , he didn't focus a lot on code, but had similar things to share about clustering !
@henrikmanukyan3152
@henrikmanukyan3152 10 ай бұрын
Main issues of K-Means : choosing the number of clusters (k) and data scaling: But what if one wants to apply weights to the features (parameters)? Should you just multiply the features with the desired coefficients?
@adiflorense1477
@adiflorense1477 4 жыл бұрын
39:54 I think z-scaling is the same as creating a normally distributed dataset
@shaileshrana7165
@shaileshrana7165 3 жыл бұрын
I wanna attend Professor Guttag's classes mostly for the education but also for the candies.
@BaoTran-se4xi
@BaoTran-se4xi 4 жыл бұрын
The guys who down voted this video must had nothing better to do. The lecture was nicely paced and I think he already made the problem as clear as it can get. Anyway, that was a great lecture. A big thank you to Professor Guttag and the MIT OpenCourseWare team.
@haneulkim4902
@haneulkim4902 2 жыл бұрын
Thanks for an amazing lecture! @29:35 it tries to cluster data into two groups and see if it correctly differentiated people who dies of heart attack and those that didn't. To me this is using clustering for classification task, if yes, when would someone use clustering rather than classification?
@breadandcheese1880
@breadandcheese1880 2 ай бұрын
Usually you will use clustering as an unsupervised project wherein you do not have a label. Clustering can be used a first line of segmentation of your dataset that lacks the outcome label for which a classification model instead utilizes.
@marceli1109
@marceli1109 5 жыл бұрын
What are some some methods to evaluate the quality of the clusters, if we do not have an outcome variable? In the example they were evaluated based in part based on whether the subjects in the cluster died at a higher rate. What do I do if I don't have an outcome to look at, only characteristics? For context, I'm creating cognitive style groups based on user data for an insurance company, and these styles will be later used for morphing, churn etc. but do not have an outcome variable per se.
@jt007rai
@jt007rai 5 жыл бұрын
Bi Plot will suffice
@zachkim1624
@zachkim1624 5 жыл бұрын
16:10 could anyone explain what the professor is talking about when he's mentioning n-squared and n-cubed algorithms ?
@TheDaveRoss
@TheDaveRoss 5 жыл бұрын
Pretty sure he is talking about the number of comparisons which need to occur to create the group, n-squared meaning the number of comparisons is on the order of the square of the number of objects to compare, and n-cubed on the order of the cube of the number of objects to compare. Sort of like big-O notation.
@johanronkko4494
@johanronkko4494 5 жыл бұрын
This is not always the case (depends on the code), but it might help to think of n-squared as 2 nested loops and n-cubed 3 nested loops. For instance, in a n-squared algorithm you have n items where, for each item, you make n comparisons. Imagine a really big n.
@RaviShankar-vd8en
@RaviShankar-vd8en 4 жыл бұрын
He was basically talking about the time complexity of both the algorithms.
@naheliegend5222
@naheliegend5222 6 жыл бұрын
love that prof for 4:35 - that is brilliant
@ElVerdaderoAbejorro
@ElVerdaderoAbejorro 7 жыл бұрын
This professor is awesome!
@flamingjob2
@flamingjob2 7 жыл бұрын
thank you mit! from singapore . lots of love
@aditi17goel
@aditi17goel 2 жыл бұрын
40:00 why is mean 0 and standard deviation 1?
@ayandas8299
@ayandas8299 4 ай бұрын
To show new mean is zero: mean = (sum of vals)/n, vals is then transformed (by code) such that centered_normalized_vals = new_vals = (vals - mean)/sd, so new_mean = (sum of (new_vals - mean))/n = (sum of vals - n*mean) / (sd*n) = (n*mean - n*mean) / (sd*n) = 0. To show sd becomes 1: originally sd is calculated as root ((1/n)*sum over every val of ((val - mean)^2)), vals is transformed (by code) such that centered_normalized_vals = new_vals = (vals - mean)/sd, so new_sd = root ((1/n)*sum over every new val of ((new_val - new_mean)^2)), new_mean was previously shown to be zero, so this means new_sd = root ((1/n)*sum over every new val of (((val - mean)/sd)^2)) = root ((1/n)*(1/sd^2)*sum over every val of ((val - mean)^2)), since (by our initial definition) sum over every val of ((val - mean)^2) = n*sd^2, this tells us that new_sd = root ((1/n)*(1/sd^2)*n*(sd^2)) = new_sd = 1.
@chanjohn5466
@chanjohn5466 4 жыл бұрын
Why we use clustering while we have the label? Like in the medical example, we already know the label (0,1).
@jwall6412
@jwall6412 4 жыл бұрын
at 46:50 the professor mentions “has pretty good specificity, or positive predictive value, but its sensitivity is lousy.” can someone explain how specificity = ppv? im assuming: ppv = tp/(tp+fp) specificity = tn/(tn+fp) doesnt ppv = precision?
@sharan9993
@sharan9993 3 жыл бұрын
No ppv means positive predictive value. Ur formulas are crct
@shivaanyakulkarni4357
@shivaanyakulkarni4357 2 жыл бұрын
At 28:00, can anyone help here ? How do we compare this dissimilarity (mentioned in IF statement), in Python. Badly need this.
@Furzgranate666
@Furzgranate666 3 жыл бұрын
Professor Guttag: 'Dendrogram... I should write that down.' also Professor Guttag: mispells it :D
@bluescanfly1981
@bluescanfly1981 6 жыл бұрын
I wish I had this professor, would probably love algorithms
@bamb00chka
@bamb00chka 6 жыл бұрын
Pure gold... thank you so much.
@AM-rb4ps
@AM-rb4ps 4 жыл бұрын
it's dendRogram, with an R. Comes from the word for "tree"
@mauricesavery
@mauricesavery 7 жыл бұрын
great professor
@okonkwo.ify18
@okonkwo.ify18 Жыл бұрын
What does he throw to the students who answers ?
@sushruthsubramanya
@sushruthsubramanya 7 жыл бұрын
Thank You MIT.
@AliElamraniElhanchi
@AliElamraniElhanchi 7 жыл бұрын
Very good class! Thanks for the video and for the knowledge!
@DuduNoisy
@DuduNoisy 3 жыл бұрын
14:20 the distance from Denver to Seattle is 1307 and the distance from Denver to Boston is 1949, so why he clustered Denver to Seattle instead of Boston when using Complete linkage? should it not be clustered to the greatest distance?
@username2537
@username2537 2 жыл бұрын
No, for complete linkage you look up, as you said the greatest distance of each cluster to the datapoint and then cluster it with the smallest out of these distances.
@adiflorense1477
@adiflorense1477 4 жыл бұрын
What was the thing that John Guttag threw at the student
@fwm146
@fwm146 3 жыл бұрын
Can anyone link machine learning to digital signal processing for me?
@akshaydixit8039
@akshaydixit8039 6 жыл бұрын
From where can I get the pdf of the same. OR some notes.
@mitocw
@mitocw 6 жыл бұрын
The course materials are available for free on MIT OpenCourseWare at: ocw.mit.edu/6-0002F16. Best wishes on your studies!
@bengbeng2005
@bengbeng2005 6 жыл бұрын
what is the average of examples in the same cluster?
@McAwesomeReaper
@McAwesomeReaper Жыл бұрын
The cluster centroid.
@bigboi9049
@bigboi9049 2 жыл бұрын
Is the full code of his examples accessible?
@jinruifoo7087
@jinruifoo7087 4 жыл бұрын
how do we test different k values when examples are unlabeled?
@McAwesomeReaper
@McAwesomeReaper Жыл бұрын
Hierarchical clustering. Just stop when you like what you see?
@artemandrianov8700
@artemandrianov8700 2 жыл бұрын
i like how Dr. Guttag just throws candy at the students
@KhoaCongngheSinhhoc-CFI
@KhoaCongngheSinhhoc-CFI Жыл бұрын
Hello, I come from wet lab and I am not familiar with machine learning. But I am really interested in this topic since I want to apply machine learning to my research in plant genetics. I have watched this video several times but still I have not gotten all the things the professor mentioned. I wonder if the author or anyone can share the lecuter or books in this topic. It will mean alot to me. Thank you in advance.
@OK-ri8eu
@OK-ri8eu 6 ай бұрын
A late response but here we go. I would suggest you read the 100 pages machine learning book, it doesn't really really assume any background but of course having it makes things easier.
@ericacastilho3039
@ericacastilho3039 3 жыл бұрын
Does someone know the name of the book 📚 used and where to access the code he mentioned he distributed?
@w1d3r75
@w1d3r75 3 жыл бұрын
Mit Open Course Ware website. Just search it by the name of the course
@robbiesmith79
@robbiesmith79 2 жыл бұрын
Ok, by minute 7 my mind is wondering if there's going to be a bonus assignment to find the probability that Professor Guttag will correctly throw you the piece of candy on the first try. The odds of you catching it greatly increase the closer your sit to the front center of the room.
@GainFitnessSystems
@GainFitnessSystems 6 жыл бұрын
What’s the name of the course? And in what college ?
@mitocw
@mitocw 6 жыл бұрын
As the video description states, the course name is "Introduction to Computational Thinking and Data Science" as it was taught in the Fall of 2016 by the Massachusetts Institute of Technology. For more information, see the course on MIT OpenCourseWare at: ocw.mit.edu/6-0002F16.
@nicolasszernek4359
@nicolasszernek4359 5 жыл бұрын
I guess that the statment that he was trying to set as True to scale the data was at line 14. Awesome lecture! Thanks.
@NisseOhlsen
@NisseOhlsen 7 жыл бұрын
To quote Dr. Banner: ‘Basic cluster recognition’...
@cato447
@cato447 3 жыл бұрын
Thats so fucking cool. Explaining how to group data and throwing candy at your students for answering right
@yusufpriyoanggodo2675
@yusufpriyoanggodo2675 6 жыл бұрын
thank you Prof!
@alexanderarnold4810
@alexanderarnold4810 5 жыл бұрын
"Clustering" is usually taught to "signal" "alumni" that anyone "in their *network*" can't learn and be good at some skills because some Terrorists in their "*network*" may be affected andor effected.
@emadadel3701
@emadadel3701 3 жыл бұрын
what is the reference book ?
@mitocw
@mitocw 3 жыл бұрын
The textbook is: Guttag, John. Introduction to Computation and Programming Using Python: With Application to Understanding Data. 2nd ed. MIT Press, 2016. ISBN: 9780262529624. See the Readings section for more details: ocw.mit.edu/6-0002F16. Best wishes on your studies!
@yuehernkang
@yuehernkang 6 жыл бұрын
great lecture! at the speed where it is easy to understand
@manishdas6525
@manishdas6525 5 жыл бұрын
MIT: 2 kinds of people. Harvard: ......... Princeton: .........
@romanemul1
@romanemul1 3 жыл бұрын
actually 3. People like you trying to make differences at any price.
@djangoworldwide7925
@djangoworldwide7925 Жыл бұрын
Data scientists actually have to think. Good one
@supriamir5251
@supriamir5251 5 жыл бұрын
Thanks MIT
@Tom-qe8oj
@Tom-qe8oj 6 жыл бұрын
Great lecture! Informative AND entertaining.
@krisdebeukeleer9264
@krisdebeukeleer9264 4 жыл бұрын
This is way more comfortable when at 1.25 speed.
@deepakgaur6192
@deepakgaur6192 5 жыл бұрын
That's one amazing lecture !
@ilhamakhyar4849
@ilhamakhyar4849 3 жыл бұрын
Thanks for the lesson professor, it's really good explanation
@chekweitan
@chekweitan 5 жыл бұрын
I am feeling stress like in a class with a bunch of genius.
@2A9D8F
@2A9D8F 4 жыл бұрын
awesome class. I craved candy while watching it
@nmtran
@nmtran 6 жыл бұрын
Amazing!
@hadlevick
@hadlevick 6 жыл бұрын
Each one choose for itself...
@KDCaine
@KDCaine 4 жыл бұрын
23:20
@mbrowne8166
@mbrowne8166 4 жыл бұрын
great lecture but the cholate did not reach me.
@pranavgoyal2366
@pranavgoyal2366 3 жыл бұрын
so we are getting candies for every right answer, i am 26 years old and heck yeah!! i would still love to have free candies 👍😜
@zainwasem
@zainwasem 2 жыл бұрын
Prof john Guttag has banch of Candie's
@AmanKhan-bw3rt
@AmanKhan-bw3rt 5 жыл бұрын
I want that choco
@nbgarrett88
@nbgarrett88 4 жыл бұрын
1:45 Democrat/Republican... Smart/Dumb... Professor, you're being redundant!
@lameiraangelo
@lameiraangelo 3 жыл бұрын
Hahahaha
@DrDoomsd
@DrDoomsd 4 жыл бұрын
He is treating you like pets. Like little hamsters.
@MAAditya
@MAAditya 4 жыл бұрын
This man has the mannerisms of Bill Gates
@Aussified
@Aussified 22 күн бұрын
Love how he subtly alluded to Republicans as dumb (and they are).
@MilesBellas
@MilesBellas 2 жыл бұрын
Normal Playback = 1.5x speed
@beepbeep767
@beepbeep767 2 жыл бұрын
if you have adhd yes
@MilesBellas
@MilesBellas 2 жыл бұрын
@@beepbeep767 gaps.....pauses.....deliberations = reduced sloooooow intonaaaaation = reduced
@ezequiasrocha3037
@ezequiasrocha3037 4 жыл бұрын
Take care, students, with democrat teachers in computer science classes. They don't care to play with you and call you a dumb if you are a republican and later ask you to choose who is the dumb and who is the smart. I hope you grades doesn't be influencied by you political bias.
13. Classification
49:54
MIT OpenCourseWare
Рет қаралды 136 М.
11. Introduction to Machine Learning
51:31
MIT OpenCourseWare
Рет қаралды 1,6 МЛН
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
4. Stochastic Thinking
49:50
MIT OpenCourseWare
Рет қаралды 189 М.
Machine Intelligence - Lecture 7 (Clustering, k-means, SOM)
1:21:44
Clustering: K-means and Hierarchical
17:23
Serrano.Academy
Рет қаралды 205 М.
StatQuest: K-means clustering
8:31
StatQuest with Josh Starmer
Рет қаралды 1,7 МЛН
6. Monte Carlo Simulation
50:05
MIT OpenCourseWare
Рет қаралды 2,1 МЛН
8. Sampling and Standard Error
46:45
MIT OpenCourseWare
Рет қаралды 80 М.
K-Means Clustering Algorithm with Python Tutorial
19:20
Andy McDonald
Рет қаралды 116 М.
7. Confidence Intervals
50:29
MIT OpenCourseWare
Рет қаралды 179 М.
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19