12. Iterated Expectations

  Рет қаралды 72,481

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

Пікірлер: 37
@snehalsanghvi6122
@snehalsanghvi6122 9 жыл бұрын
Those are some wonderful examples you have used professor! I've been following this entire probability series and I would like to say that I am really grateful for these videos. Thank you and keep up the good work!
@saicharanmarrivada5077
@saicharanmarrivada5077 3 жыл бұрын
This is the best series of Probability on internet
@remmymusumpuka6519
@remmymusumpuka6519 10 жыл бұрын
JT is an excellent lecturer! Easy to follow his explanations on stochastic processes!
@wolftribe66
@wolftribe66 4 жыл бұрын
thinking back of my statistics course in university, i feel like i've been conned. This is so much better
@hitashasharma2178
@hitashasharma2178 5 жыл бұрын
I want to meet this amazing teacher and tell him how much I value this video. My stats teacher is really bad!
@achillesarmstrong9639
@achillesarmstrong9639 6 жыл бұрын
wow I watched many different sources , this is by far the best and most clearly explained video. It really help us that love mathematics and want to learn by ourselves.
@dania_884
@dania_884 3 жыл бұрын
Great teacher! he explained many concepts in Statistics far much better than my previous learned, cleared out many doubts. I'm following his series also. Only this Lecture 12 I'm not full understanding yet, need more practice.
@AdiJ8
@AdiJ8 7 жыл бұрын
Thank you! This is an amazing lecture
@NehadHirmiz
@NehadHirmiz 9 жыл бұрын
Thank you for this wonderful lecture
@xinmingxu9940
@xinmingxu9940 9 жыл бұрын
Amazingly explained!
@soccergalsara
@soccergalsara 11 жыл бұрын
Mental Gymnastics (Y).
@PrakashBesra
@PrakashBesra 7 жыл бұрын
at 33:00, in Y=1 universe, f(x)dx=P(x) where dx=1, P(x)=1, therefore f(x)=1, now var(X|Y=1)=integral of ((x-E[X|Y=1])^2*f(x)) from 0 to 1. . that's how he got 1/12. and similarly for Y=2 universe..Is this correct?
@beal_a
@beal_a 7 жыл бұрын
Yes, you can compute it formally from the definition of variance, and, from what I can tell, your derivation is correct. Alternatively, you can memorize that the variance of a uniform distribution is 1/12 * (b - a)^2 for a distribution from a to b. This is what the professor was implying when he said "By now you've probably seen that formula..." at 32:50.
@sunritroykarmakar4406
@sunritroykarmakar4406 2 жыл бұрын
Analogous to moi of rod about axis perpendicular to its centre.
@mikechen3174
@mikechen3174 3 жыл бұрын
Everyone here is blessed by MITocw
@ArsenedeBienne
@ArsenedeBienne 3 жыл бұрын
36:04 maybe it's worth mentioning that all E[Xi] are equal
@nickiexu7259
@nickiexu7259 7 жыл бұрын
amazing...
@jeffreyanderson5333
@jeffreyanderson5333 4 жыл бұрын
Harvard does have a series for Probability on KZbin .
@sudhanshudey758
@sudhanshudey758 3 жыл бұрын
thanks a lot
@theerawatbhudisaksang7162
@theerawatbhudisaksang7162 11 жыл бұрын
love it
@delYdelX
@delYdelX 3 жыл бұрын
0:21 outline
@pratkmistry6401
@pratkmistry6401 5 жыл бұрын
32:40 How do we write the expectation value as 1/2 and 3/2 ?
@alikhansmt
@alikhansmt 5 жыл бұрын
in case of uniform distribution, expectation is the center point of the range of values. So for y=1, E = (1+0)/2 = 1/2 For y=2, E =(1+2)/2 = 3/2 Generally we would find by integrating x times Fx in the range of x
@_sidvash
@_sidvash 3 жыл бұрын
Ali's response is correct. Just to elaborate on how you can do this using integration. -> for y=1, E(X) = ∫xf(x) dx integrated over [0,1]. In the conditional universe y=1, f(x|y=1) = 1 (since area under curve has to be 1 within our current universe of y=1 and x is uniform). So E(X) = ∫x*1 dx over [0,1] which gives you 1/2. for y=2, E(X) = ∫xf(x) dx integrated over [1,2]. In the conditional universe y=2, again, f(x|y=2) = 1 (since area under curve has to be 1 within our current universe of y=2 and x is uniform). So E(X) = ∫x*1 dx over [1,2] which gives you 3/2. The thing to note here is that even though f(x) = {1/3 for 0
@Roman-fb9mq
@Roman-fb9mq Жыл бұрын
@@_sidvash Thanks. You cleared my confusion.
@empirewhite
@empirewhite 6 жыл бұрын
32:45 How come both var(X | Y=1) = 1/12 and var(X| Y=2) = 1/12 I didn't follow
@intaemoon4356
@intaemoon4356 6 жыл бұрын
Hope this link helps. math.stackexchange.com/questions/728059/prove-variance-in-uniform-distribution-continuous
@TolgaYilmaz1
@TolgaYilmaz1 5 жыл бұрын
The variance of a uniform distribution on interval [a, b] is given by [(b - a)^2]/12. So, it doesn't depend on where the interval is. It depends only on the length of the interval; in particular, it's proportional to the square of the length of the interval. So, for a uniform distribution on [0, 1], the variance is 1^2/12 = 1/12. Similarly, for [2,1], it's again 1^2/12 = 1/12. But for an interval that's twice as long, e.g. [2, 0] or [3, 1] or [4,2], it would be 2^2/12 = 1/3.
@leodu561
@leodu561 5 жыл бұрын
See lecture 8
@Roman-fb9mq
@Roman-fb9mq Жыл бұрын
@@TolgaYilmaz1 Thanks. Really helpful.
@allandogreat
@allandogreat 4 жыл бұрын
expectation mean and var are the most difficult to be understood.
@Scb-ef6ih
@Scb-ef6ih 7 жыл бұрын
This was great. I only need some Harvard friends I can impress.
@rohtashbhall2671
@rohtashbhall2671 5 жыл бұрын
Which book sir ?
@mitocw
@mitocw 5 жыл бұрын
The text for this course is: Bertsekas, Dimitri, and John Tsitsiklis. Introduction to Probability. 2nd ed. Athena Scientific, 2008. ISBN: 9781886529236. For more info, see the course on MIT OpenCourseWare at: ocw.mit.edu/6-041F10.
@leodu561
@leodu561 5 жыл бұрын
Professor: What is the variance of *this thing* ? It's the expected value of *the thing* minus the square of the expected value of *the thing* .... John Carpenter: Since when is my movie a random variable???!!!
@forrestlin3401
@forrestlin3401 2 жыл бұрын
ngl, good video, but thumbnail creeeeeeep
@theerawatbhudisaksang7162
@theerawatbhudisaksang7162 11 жыл бұрын
love it
13. Bernoulli Process
50:58
MIT OpenCourseWare
Рет қаралды 110 М.
9. Multiple Continuous Random Variables
50:51
MIT OpenCourseWare
Рет қаралды 112 М.
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
The Largest Rubik's Cube Calculator
21:13
TheGrayCuber
Рет қаралды 2,2 М.
one year of studying (it was a mistake)
12:51
Jeffrey Codes
Рет қаралды 340 М.
15. Poisson Process II
49:28
MIT OpenCourseWare
Рет қаралды 72 М.
Inside the V3 Nazi Super Gun
19:52
Blue Paw Print
Рет қаралды 3,2 МЛН
I Spent 100 Hours Inside The Pyramids!
21:43
MrBeast
Рет қаралды 37 МЛН
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН