14.2: Limits and Continuity

  Рет қаралды 84,808

Alexandra Niedden

Alexandra Niedden

Күн бұрын

Пікірлер: 65
@beyourself196
@beyourself196 4 жыл бұрын
your videos help us a lot. thank you from core of my heart
@stnguyen1234
@stnguyen1234 2 жыл бұрын
Hey im taking Math 2415 right now. These videos are straight to the point and helpful!
@ChrisHuxleys
@ChrisHuxleys 4 жыл бұрын
I had a question in my quiz yesterday that looks almost just like #6 and I couldn't figure it out for the life of me. THANK you for clearing it up for me! Your videos perfectly align to my Calc 3 class!
@melchiortod29
@melchiortod29 3 жыл бұрын
My teacher only brings limits where you can't plug it in😂 thank you very much! Well explained!
@upsidedownChad
@upsidedownChad 3 ай бұрын
Incrivel. Muito obrigado pela aula !!
@danielrojas3958
@danielrojas3958 3 жыл бұрын
Nawebona me salvaste el primer parcial mi reina, excelente video, me suscribo
@Salamanca-joro
@Salamanca-joro 7 ай бұрын
21:10 in this example i made y=0 and i got 1 for y axis and 1 for x axis as well so the limit does exist and it value is 1 right? Or we are supposed to prove that the limit does not exist?
@alexandraniedden5337
@alexandraniedden5337 7 ай бұрын
Showing that limits along two paths give the same value does not prove the limit is equal to that value. Oftentimes if we cannot substitute in the point, then the limit does not exist. The task then is to find two paths which give different limits; hence the limit would not exist.
@Salamanca-joro
@Salamanca-joro 7 ай бұрын
@@alexandraniedden5337 oh yeah I forgot this! Thank you so much
@ekindinek
@ekindinek 7 ай бұрын
for the example 6 , 31:09 ; why did you only check the r goes to 0+ but not both 0+ and 0-
@ekindinek
@ekindinek 7 ай бұрын
i think it may because of lnx does not exist for negative side, but what if it would exist, shouldn't we check both sides?
@alexandraniedden5337
@alexandraniedden5337 7 ай бұрын
In polar, we take r to be positive, so we do not need to check 0- because this would be a negative value for r.
@daddyji3742
@daddyji3742 Жыл бұрын
btw you are very wonderful teacher and love from India 🇮🇳
@ChefFarisMom3
@ChefFarisMom3 Жыл бұрын
I have a question for last questions. Sin theta Ln r applying LHP rule then it will be Cos theta .1/r?
@HamzaAhmed-oq5od
@HamzaAhmed-oq5od 4 жыл бұрын
In the last example how do we get a 2r^2 and then the further 1/r in the numerator?
@isisyasmim639
@isisyasmim639 4 жыл бұрын
At 33:18 I'm having a hard time figuring out where that 1/r and -1/2r² came from. Can you clarify, please?
@alexandraniedden5337
@alexandraniedden5337 4 жыл бұрын
When you substitute r = 0 into the limit, you end up with infinity / infinity. This is a case where L'Hopital's Rule applies. After that infinity / infinity, I took the derivative with respect to r. The derivative of lnr is 1/r and the derivative of 1/(2r) is (1/2)*-1(r^-2). I hope this helps!
@isisyasmim639
@isisyasmim639 4 жыл бұрын
@@alexandraniedden5337 Thank you! Now I get it!
@justintang9801
@justintang9801 4 ай бұрын
pretty sure at 13mins, the value of delta and absol. on the graph should be swapped with +/- delta at the x axis and absol. at the y axis, no?
@elmao4927
@elmao4927 3 жыл бұрын
are there rules to the paths you can take? as in can you add constants so that y= x+ 5 for example
@enriquesoler3150
@enriquesoler3150 7 ай бұрын
I have a question for these types of limits: after I try direct substitution and got an indeterminate form, do I just go straight into proving the limit DNE or first try limit rules first to see if I can get a limit value, and if that fails I prove the limit DNE?
@alexandraniedden5337
@alexandraniedden5337 7 ай бұрын
First try limit rules. Ultimately if you get an indeterminate form, the limit most likely doesn't exist, but not always.
@vybsdeadly5493
@vybsdeadly5493 2 ай бұрын
for the last example the limit as r --> 0 from the right is -infinite/ infinite ? becasue as ln goes to 0 y is going down forever ? so this confuses me because i didnt know lohopitals rule was applies this way
@alexandraniedden5337
@alexandraniedden5337 2 ай бұрын
Yes, you are correct! Should be negative infinity / infinity. And yes, you can use L'Hopital's Rule this way. Good catch!
@daddyji3742
@daddyji3742 Жыл бұрын
are you teaching from thomas finney calculus mam ?
@punyisasrimuang7782
@punyisasrimuang7782 4 жыл бұрын
31:25 why y become r sin?
@alexandraniedden5337
@alexandraniedden5337 4 жыл бұрын
I converted from rectangular to polar coordinates. For the conversion, x = rcos(theta) and y = rsin(theta). It will be easier to evaluate this limit using polar coordinates rather than rectangular.
@prriyka
@prriyka 3 жыл бұрын
You are incredible!
@sfxyz3746
@sfxyz3746 3 жыл бұрын
You are really the best
@苏伏
@苏伏 4 жыл бұрын
any 14.3 video?
@alexandraniedden5337
@alexandraniedden5337 4 жыл бұрын
No, sorry! Here is a video from a colleague covering 14.3 (his says 13.3, but it's 14.3 from the textbook I use - Partial Derivatives): kzbin.info/www/bejne/m4napmZ6oM9ob5Y
@ERKBOI
@ERKBOI 4 жыл бұрын
I cannot understand the last example. Can you clarify it a little bit? Where does rsin came from?
@alexandraniedden5337
@alexandraniedden5337 4 жыл бұрын
The rsin(theta) is the polar conversion for y (think unit circle). Likewise, rcos(theta) is the polar conversion for x. Hope this helps!
@hafiziehamdie8502
@hafiziehamdie8502 2 жыл бұрын
have you covered chapter 14.3? or maybe it is on a separate video?
@jkk23-g7c
@jkk23-g7c 2 жыл бұрын
Great course, thank you very much. I wonder what textbook you are using. Is it the Stewart's Calculus textbook?
@rayalhar
@rayalhar 2 жыл бұрын
Yes
@olidialunga8593
@olidialunga8593 3 жыл бұрын
Did I miss where you ended up explaining "the other trick"
@alexandraniedden5337
@alexandraniedden5337 3 жыл бұрын
Can you please give me a timestamp? I'm not sure what you are referring to.
@olidialunga8593
@olidialunga8593 3 жыл бұрын
@@alexandraniedden5337 16:37, when mentioning the 3 options, option number 3 was 'one other "trick" ', which you had said you'd explain later. I didn't get that trick in the end. Did you mention it in this video?
@alexandraniedden5337
@alexandraniedden5337 3 жыл бұрын
@@olidialunga8593 Ah, thank you. The "trick" I was referring to is finding the limit using polar coordinates rather than rectangular. See example #6 for this method.
@olidialunga8593
@olidialunga8593 3 жыл бұрын
@@alexandraniedden5337 Oh, that makes sense. Thank you!
@jkk23-g7c
@jkk23-g7c 2 жыл бұрын
I had the same question, so thank you for asking this.
@Salamanca-joro
@Salamanca-joro 7 ай бұрын
8:21 you could have just said : Since 0 does not equal -1/2 the limit does not exist at ( 0 , 0 ) right🤨?
@alexandraniedden5337
@alexandraniedden5337 7 ай бұрын
Yes, that is the ultimate answer to the problem :)
@abeimnida
@abeimnida Жыл бұрын
I still dont understand why in example we need to consider the line y=x?
@alexandraniedden5337
@alexandraniedden5337 Жыл бұрын
I'm assuming you're referring to example 2. If so, the line y=x shows us that the limit as (x,y) approaches (0,0) is not the same along every path. I thought to choose y=x because that would give me -x^2 in the numerator, which I could eventually divide out with the denominator (not giving 0 as the previous 2 examples did). We had a feeling the limit would not exist so it was important to find a path where the limit did not = 0.
@mukisajoshua2026
@mukisajoshua2026 3 жыл бұрын
I love youuuuuuu ❤️❤️❤️❤️ u saved my day
@codingwithelhacen990
@codingwithelhacen990 5 жыл бұрын
21:39 . why did you chose y=x? can you also do limit along x-axis and y-axis?
@alexandraniedden5337
@alexandraniedden5337 5 жыл бұрын
For example #4, I first approached the limit along the y-axis (which is x=0) - this was part a. I got the limit to be 1. If I had chosen to approach the limit along the x-axis (y=0), I would have also gotten 1. I could certainly have chosen to approach along the x-axis rather than the y-axis. Doing both isn't helpful (see next paragraph). In the case where a limit does not exist (which was likely the case here because we couldn't immediately substitute (0,0)), we need to find 2 differing limits. That's why I chosen y=x, because approaching along this path produces a limit of 0 (part b). The two differing values in parts a and b show that the limit does not exist.
@abdullahalgarea3260
@abdullahalgarea3260 5 жыл бұрын
@@alexandraniedden5337 Hello I saw some videos and I thing you are the best you tuber I have seen and I want to ask you if you have section 14.3
@abdullahalgarea3260
@abdullahalgarea3260 5 жыл бұрын
and I want to say to you keep going
@alexandraniedden5337
@alexandraniedden5337 5 жыл бұрын
@@abdullahalgarea3260 I don't, but this is a video on partial derivatives (14.3) from a colleague of mine: kzbin.info/www/bejne/m4napmZ6oM9ob5Y Hope this helps!
@benjaminandrew7940
@benjaminandrew7940 3 жыл бұрын
@@alexandraniedden5337 Thank you so much
@HamzaAhmed-oq5od
@HamzaAhmed-oq5od 4 жыл бұрын
Are you sure the derivative for sinx lnx is correct?
@alexandraniedden5337
@alexandraniedden5337 4 жыл бұрын
I am not sure where in the video you are referring, as I do not see an example with sinx lnx. That being said, the correct derivative is: sin(x)/x + ln(x)cos(x).
@benjaminandrew7940
@benjaminandrew7940 3 жыл бұрын
is there a 14.3??
@benjaminandrew7940
@benjaminandrew7940 3 жыл бұрын
I saw your reply to another person and see that you do not
@govindc7690
@govindc7690 2 жыл бұрын
Can you please upload the notes?
@kaneeindall5733
@kaneeindall5733 Жыл бұрын
Thank you!
@aryankundu4954
@aryankundu4954 2 жыл бұрын
16:36
@woldie2127
@woldie2127 7 ай бұрын
great thanks
@mukisajoshua2026
@mukisajoshua2026 3 жыл бұрын
Brilliant
@abhijitkashyap3338
@abhijitkashyap3338 4 жыл бұрын
Madam please solve the following f(x, y) = {1/x^2+y^2 (x, y) not eq (0, 0) 0 (x, y) = (0, 0)
@ryanciminski4695
@ryanciminski4695 3 жыл бұрын
Not the point of this channel.
14.3: Partial Derivatives
31:51
Alexandra Niedden
Рет қаралды 28 М.
14.1: Functions of Several Variables
30:06
Alexandra Niedden
Рет қаралды 171 М.
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
The Dome Paradox: A Loophole in Newton's Laws
22:59
Up and Atom
Рет қаралды 732 М.
Calc 3 14.7 Notes: Maximum and Minimum Values
32:05
Alexandra Niedden
Рет қаралды 4,9 М.
14.5: The Chain Rule
31:48
Alexandra Niedden
Рет қаралды 38 М.
Limits of Multivariable Functions - Calculus 3
19:04
The Organic Chemistry Tutor
Рет қаралды 784 М.
Calc 3 14.8 Notes: Lagrange Multipliers
28:08
Alexandra Niedden
Рет қаралды 7 М.
15.2: Double Integrals over General Regions
41:28
Alexandra Niedden
Рет қаралды 151 М.
What is mathematical thinking actually like?
9:44
Benjamin Keep, PhD, JD
Рет қаралды 9 М.
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН