15.8.4: Setting Up an Integral That Gives the Volume Inside a Sphere and Below a Half-Cone

  Рет қаралды 46,766

Calculus 3D

Calculus 3D

Күн бұрын

Пікірлер: 21
@reidflemingworldstoughestm1394
@reidflemingworldstoughestm1394 3 жыл бұрын
Finding phi1: z=sqrt (x^2+y^2). When y=0 the equation becomes z=x, with slope 1. This slope has the angle from the vertical of pi/4, so phi1=pi/4. For z= sqrt (3x^2+3y^2). y=0 -> z=sqrt(3)x, slope=sqrt(3). Slope is tan(angle from horizontal) and slope is cot(angle from vertical), so phi1 = arctan(1/sqrt(3)) = pi/6 or phi = pi/2-arctan(sqrt(3)) = pi/6. The angle of the side of the cone, phi, is quite literally sitting right there in the coefficient in front of the sqrt(x^2+y^2). Just invert the coefficient and take the arctan.
@cchamberlin2000
@cchamberlin2000 2 жыл бұрын
True. I mention that in reply to one of the older questions.
@sbusisomcebongwenya167
@sbusisomcebongwenya167 Жыл бұрын
Well. Im saving this one. Thank you sir!!!
@rashedbinkhonain7022
@rashedbinkhonain7022 3 жыл бұрын
Great video!
@Srijjjj
@Srijjjj 3 жыл бұрын
Good one sir
@sandlertossone1813
@sandlertossone1813 6 жыл бұрын
Won't a cone always hit the sphere at pi/4?
@calculus3d130
@calculus3d130 6 жыл бұрын
No. Use z=sqrt(3x^2+3y^2) for your half-cone. You should get phi=pi/6
@calculus3d130
@calculus3d130 6 жыл бұрын
Here's another way to get phi, assuming z=sqrt(3x^2+3y^2). Set y=0, which turns the side of the cone into a line in the xz-plane. You'll get z=sqrt(3)*x. Draw the corresponding triangle and get tan(phi)=1/sqrt(3) or phi=pi/6.
@nathannixon2727
@nathannixon2727 6 жыл бұрын
What if the cone's summit isint centered with the sphere?
@calculus3d130
@calculus3d130 6 жыл бұрын
@@nathannixon2727 If the cone's vertex doesn't coincide with the center of the sphere, then it is potentially a harder problem for which spherical coordinates may not be helpful. Still, in general, to find the volume of a solid region, you would triple integrate: the inner lower limit of integration would be the function that gives the lower boundary surface, while the inner upper limit would be the function that represents the upper boundary surface.
@bangaloremathematicalinsti5351
@bangaloremathematicalinsti5351 4 жыл бұрын
what is the software you are using to draw the graphs?
@calculus3d130
@calculus3d130 4 жыл бұрын
OneNote and a cheap Wacom drawing tablet.
@lol-gu4wr
@lol-gu4wr 7 ай бұрын
nice video
@MrSqueakinator
@MrSqueakinator 4 жыл бұрын
Don't you need to be integrating z for your first integral?
@calculus3d130
@calculus3d130 4 жыл бұрын
You could do it that way in rectangular or cylindrical coordinates. I used spherical coordinates here, so no need to worry about z.
@KishoreG2396
@KishoreG2396 5 жыл бұрын
I dont understand. If you rewrite the cone equation with z = pcos(phi), x = psin(phi)cos(theta), and y = psin(phi)sin(theta), you will get sin(phi) = cos(phi), which implies phi = pi/4, not pi/6. Could you please explain?
@calculus3d130
@calculus3d130 5 жыл бұрын
In the example from the video, the lower value of phi does equal pi/4. If you're referring to the example z=sqrt(3x^2+3y^2), then, no, phi must be smaller than pi/4 because this cone is "taller" than the one from the video, given by z=sqrt(x^2+y^2). To see this, set y=0 in z=sqrt(3x^2+3y^2). This turns the side of the cone into a line in the xz-plane. You'll get z=sqrt(3)*x. Draw the corresponding triangle and get tan(phi)=1/sqrt(3) or phi=pi/6. Remember, the lower limit on phi in this case is measured from the z-axis to the side of the cone (or line if you look at the two-dimensional cross-section you get by setting y=0).
@KishoreG2396
@KishoreG2396 5 жыл бұрын
@@calculus3d130 I understand now. Thank you.
@calculus3d130
@calculus3d130 5 жыл бұрын
@@KishoreG2396 Glad to help.
@jumanamohamediqbal6531
@jumanamohamediqbal6531 3 жыл бұрын
Isn't it 0 to π/4
@calculus3d130
@calculus3d130 3 жыл бұрын
No, assuming you're referring to the limits on phi, that would give the volume inside the cone and the sphere.
15.8.5 (similar problem)
8:14
Calculus 3D
Рет қаралды 1,6 М.
Introduction to triple integral finding bounds
20:01
Daniel An
Рет қаралды 40 М.
Wednesday VS Enid: Who is The Best Mommy? #shorts
0:14
Troom Oki Toki
Рет қаралды 50 МЛН
SLIDE #shortssprintbrasil
0:31
Natan por Aí
Рет қаралды 49 МЛН
요즘유행 찍는법
0:34
오마이비키 OMV
Рет қаралды 12 МЛН
OCCUPIED #shortssprintbrasil
0:37
Natan por Aí
Рет қаралды 131 МЛН
Example: Volume in Spherical Coordinates
7:54
Justin Ryan
Рет қаралды 20 М.
Triple Integrals Practice Problems
20:34
James Hamblin
Рет қаралды 114 М.
Volume of a sphere with a triple integral
7:21
bprp calculus basics
Рет қаралды 34 М.
Line Integrals Are Simpler Than You Think
21:02
Foolish Chemist
Рет қаралды 140 М.
Triple Integrals in Spherical Coordinates
28:43
Houston Math Prep
Рет қаралды 177 М.
Triple integrals to find volume of the solid (KristaKingMath)
14:03
Integration in Spherical Coordinates
7:52
Dr. Trefor Bazett
Рет қаралды 216 М.
Wednesday VS Enid: Who is The Best Mommy? #shorts
0:14
Troom Oki Toki
Рет қаралды 50 МЛН