I was studying complex analysis today, and you uploaded another one of your miracles. And manliest opening ever.
@FGj-xj7rd6 жыл бұрын
One of the manliest openings ever.
@user-lu6yg3vk9z6 жыл бұрын
Flammable Maths can u solve this integral of inversetanget(1/(x'(2)-x-1) going from 0 to 1. x'(2)= rasied to the second.
@ryanmuller94976 жыл бұрын
Not sure if I'm missing a running joke but, on the off chance that I'm not, I figure it's worth mentioning that the 'g' in "elegant" is the same as in "goat" or "green", not "gentlemen" or "generic" (as far as I can tell, "elegant" is the word you were going for several times when describing some of the results at the end). Anyway, that aside, great video as usual.
@anegativecoconut49406 жыл бұрын
Don't give me Pi, give me Poland.
@Ensivion6 жыл бұрын
always great to get a refresher on these integral, will help out with qualifiers.
@user-wu8yq1rb9t2 жыл бұрын
Great Papa, Great! I just learned and enjoyed. Thank you so much Papa 💗
@PapaFlammy692 жыл бұрын
@soldenstoll84955 жыл бұрын
Those are some hot integral signs 🤩
@starship11282 жыл бұрын
Tysm as a University of Michigan student taking Physics 351 doing Homework 9 problem 6.
@The_Professor_S_6 жыл бұрын
Another great video Papa!
@tatjanagobold28106 жыл бұрын
Please support Papa Flammy on Patreon! He really need some chalk and new towels :'(
@funkycude576 жыл бұрын
Papa flammys random oiaaaaa
@parthpawar78376 жыл бұрын
Complex analysis :( bounces over my head
@absolutelymath33996 жыл бұрын
FLAMMY=BEST
@Rundas694206 жыл бұрын
30 seconds in and I'm already half dead because of laughter.👌
@restitutororbis9646 жыл бұрын
I missed those fucking amazing intros :D
@JeonJungkook-zn8kk6 жыл бұрын
Hello Papa Flammy, you're great!!! 😢 I'm not good at maths but I hope I'll get as fantastic as you in my field 😀 Lots of love!
@kittenhero5686 жыл бұрын
it took me like 10 seconds before i started laughing at the shirt
@alexkhortov78936 жыл бұрын
wi rielli nied to hit sat poland
@slavinojunepri7648 Жыл бұрын
We see you, funny German mathematician 😂
@rybaplcaki72676 жыл бұрын
That opening
@yusherry33 жыл бұрын
Thank you very much!! You save my homework!!! :p
@h4c_186 жыл бұрын
π=0 xD. Nice joking around :)
@mayankvats9266 жыл бұрын
That flammable handstand tho😂
@luisramrod91216 жыл бұрын
Your videos get funnier 😂😂😂👍😀😆
@polychromaa2 жыл бұрын
I solved both of these integrals using real methods!
@EmissaryOfSmeagol6 жыл бұрын
16:41 "ele-JANT"
@EmissaryOfSmeagol6 жыл бұрын
lol just being a troll
@MrJdcirbo5 жыл бұрын
I need that shirt in my life
@NeoxX3176 жыл бұрын
The title reminds me of « 2 girls 1 cup »...
@treyforest24665 жыл бұрын
German Man Advocates for Violence Against Poles, Falls on His Face
@benjaminbrat39226 жыл бұрын
What about the half-circles of radii R and epsilon? They approach 0 when you take the limits but is it that obvious?
@user-jn4qk3qi4g4 жыл бұрын
Great vid! Quick question, at the end you write the Real part of the contour integral is pi^3/8, this isn’t technically true right? Earlier you found that the real part was -pi^3/4, and only through algebraic manipulation we got to pi^3/8=I. Anyhow, love the videos, please keep them coming! :)
@lukandrate9866 Жыл бұрын
I tried to evaluate this integral without complex analysis and stopped trying to evaluate int[0, π](ln²(sin x)dx)
@weird4076 жыл бұрын
I really struggle with this part where the contour "arcs" are zero. In what video is this explained best? Or what source should I read, the only thing I can imagine is trying to draw a hemicircle with ends at +- infinity which would create a flat line. But formally how is this proven?
@user-jn4qk3qi4g4 жыл бұрын
I know this is a very late reply, but you can research: - Jordan’s Lemma - the ML Inequality - The triangle inequality These are all methods that can prove that in special cases like this, the arcs approach zero as R and epsilon approach infinity and 0 respectively.
@Videohead-eq5cy6 жыл бұрын
uwu what's this??? An integwation to infwinitieeee??? :3
@SteamPunkLV6 жыл бұрын
cool vid, sadly I have no idea whats going on xdxd where would you recommend me to learn complex analysis, and what sort of mathematical background do I need (calc 3 or...?)
@bouteilledargile5 жыл бұрын
you need to be comfortable with multivariable calculus and then look up the nptel lectures on complex analysis on youtube. that's how im learning it
@G0r0134 жыл бұрын
But Log(z) is not analytic on the negative real axis, I think you should have used another branch
@atrimandal43246 жыл бұрын
0:24- Don't die 😕
@PeterBaumgart1a6 жыл бұрын
Jens, good work! And enjoyable to watch too, despite of (or maybe because of?) all the profanity you like to slip in... Anyway, a little language hint, and hope you take it well: ELEGANT is pronounced like it is in German, just with the accent shifted to the first syllable, i.e. specifically NOT "eledschant"... And CHALK is pronounced "tschok" in germanized spelling, i.e. with a "silent" L. (You are welcome... No charge :-)
@dmitryigorevitch73472 жыл бұрын
Hi Jens, it's a great work you are doing here. I accidentally stumbled upon your channel trying to solve me own problem similar to this. But I still fail. Maybe you would try to solve it? It's double integral with parameter k, I think it cannot be solved completely, but maybe it can be simplified to one-dimensional one. integral_(-inf)^(inf) integral_(-inf)^(inf) ln^2(1 + k * (x - y)^2) / ((1 + x^2) * (1 + y^2)) dx dy
@dagatho6 жыл бұрын
My favorite arcade games are "Punch a Nazi" and "Whack-a-Pole"
@dagatho6 жыл бұрын
I don't like "Handstand For 2 Seconds" though because it's 2 difficult 4 me
@hoodedR6 жыл бұрын
Btw... The Euler experience thingy... Substituting x-->1/x gives it pretty much directly..
@hoodedR6 жыл бұрын
@@PapaFlammy69 oh...😅
@linuskelsey82956 жыл бұрын
generalise for ln^2(x)/x^n+1
@polychromaa2 жыл бұрын
You can do this by finding the integral of x^m/(x^n+1) and differentiating with respect to m twice
@nicbajito6 жыл бұрын
I laught so hard when you said π=0 😂cuz 0≠3 tho ! Haha nice try
@michaelempeigne35196 жыл бұрын
how to integrate int(from 0 to inf ) [ (ln x) dx / sqrt ( x + 1) ]
@MA-bm9jz6 жыл бұрын
Wouldn't it be easier to use x=1/u substitution? And the integral would become ln(1/u)/(u^2+1) du and the boundaries would stay the same and then just add both integrals since they are both from 0 to infinity
@MA-bm9jz6 жыл бұрын
@@PapaFlammy69 yeah sorry I thought you did both with complex
@georgecooper73896 жыл бұрын
Coolio
@Symiatos6 жыл бұрын
Is it normal that you said before in the video that the integral over the contour c is equal to negative pi cubed over 4 and then at the end said that this is now equal to pi cubed over 8... I guess it was the hidden proof that pi=0 lmao ( 15:19 )
@assafabram96496 жыл бұрын
At 5:40 shouldn’t it be +iπ²/8?
@boium. Жыл бұрын
Yes, he made a mistake there, but on the next frame he puts the i on the bottom of the fracition again so then the minus sign should be there. So there is no continuing error.
@MrRyanroberson16 жыл бұрын
Shouldn't there be ways to solve real integrals without complex analysis? Or have I been trying in vein all these weeks...
@polychromaa2 жыл бұрын
I solved these integrals using real methods. It’s possible, but the integral of ln^2(x)/(x^2+1) across the positive real numbers is a hellhole imo
@andreamonteroso85864 жыл бұрын
hahahahahahaha
@46pi266 жыл бұрын
"Many ff-v-f-views... they said"
@hoodedR6 жыл бұрын
Flammy: yo fat mama Me: No u😤
@Riiisuu6 жыл бұрын
I tried to understand but I can’t I am sorry.
@surjeetsingh1729iitk6 жыл бұрын
Good work man
@themeeman6 жыл бұрын
Why do you use weird variable names in the thumbnails