23: Scalar and Vector Field Surface Integrals - Valuable Vector Calculus

  Рет қаралды 61,683

Mu Prime Math

Mu Prime Math

Күн бұрын

Пікірлер: 81
@Caleepo
@Caleepo 4 жыл бұрын
This is the only clear explanation, I found on yt. I dont know why some profs dont give the visual intuition behind this, while its actually so easy to understand.
@moosaawectison6008
@moosaawectison6008 4 жыл бұрын
Because they themselves don't know these geometrical meanings ig. Each time when I try to debate on these visual intuitions with my professor, either he would roast me 😁 or try to end the session instantly. btw this man is doing great job. I learn a lot from this channel.
@paradox6647
@paradox6647 Жыл бұрын
I watched the first part of this and due to the thing at 4:15, it was a bit hard to understand, but I eventually pieced it all together, it is a really complex topic to explain, you did a much better job then if I were to explain it, even if I were to write it down for my future self when I forget. This is the best I’ve seen on yotuube, by a large margin and trust me, I searched far and wide, excellent work!
@sportsgig7537
@sportsgig7537 4 ай бұрын
This video is still relevant even today (2024). Thank you for making the video. It has made me appreciate the concept of surface integral of a vector field
@3manthing
@3manthing 4 жыл бұрын
Maybe i'm not the originally targeted part of audince, as i have studied maths, so this things are fairly easy to me, as i'm only refreshing my memory, so i cannot give this channel a proper assessment, not content-wise anyway. When it comes to math, i'm quickly pleased. Channels such as this one, offers me a fun revising of theoretical stuff, with some examples. You might be thinking, why don't i just pick up some math text book. I would, but i'm very lazy. What i can say is your explanations are simply amazing. It is by how you are explaining this things show, how well you understand it on deeper, more intuitive level. And at your age... 😯 👏 bravo, just bravo
@briandwi2504
@briandwi2504 2 жыл бұрын
That was brilliant. So concise and clear. Many thanks for passing on your insight into this topic. I shall watch that again and take notes. Really great lesson.
@Wiik415
@Wiik415 Ай бұрын
to be honest you're saving my life, thank you
@KyaBroderick
@KyaBroderick Жыл бұрын
this video saved me before my final. Its so much easier than I thought! Amazing explanation thank you
@alicebobson2868
@alicebobson2868 Жыл бұрын
this was so useful, ive just started going over my notes and to understand multivriable calc and this was one of the best videos for surface integrals, way better than my lecterur. Youre saving my grades lol
@MoguinYT
@MoguinYT 2 жыл бұрын
holy shit, how can someone explain something so good and so fast, propss my man!!
@fairouztiti90
@fairouztiti90 Жыл бұрын
Thank you from Algeria , this is really helping me 💗
@bentupper4614
@bentupper4614 2 жыл бұрын
Excellent. Clear and to the point. No frills needed.
@hikmatullahpakhtoon3694
@hikmatullahpakhtoon3694 4 жыл бұрын
Amazingly and beautifully explained. Thanks professor.
@rahulbhavsar1402
@rahulbhavsar1402 2 жыл бұрын
This explanation is unique all you tube video
@luismendez933
@luismendez933 4 жыл бұрын
Increíble!!! 💯 Muy bien explicado, súper recomendado.
@thabanivshoko4275
@thabanivshoko4275 3 жыл бұрын
best explanation for surface integrals
@txikitofandango
@txikitofandango 4 жыл бұрын
Just like line integrals can be thought of as a chain of varying density, a surface integral can be a curved sheet with varying density.
@txikitofandango
@txikitofandango 4 жыл бұрын
but I like the idea of flattening the surface onto 2-D and getting its height as a function of 2-D location
@abdofast5
@abdofast5 4 жыл бұрын
brilliant! I think I'm going to watch all of your videos just for fun.
@kinzakanwal471
@kinzakanwal471 2 жыл бұрын
Thank u sir ...your lecture is very helpfull ,....Everything is clear now ....
@MuskaanMittal
@MuskaanMittal 5 ай бұрын
At 7:00 , shouldn't the parallelogram's endpoints be r(u, v), r(u+du, v) etc?
@MuPrimeMath
@MuPrimeMath 5 ай бұрын
That's correct. As is implied at 4:09, I'm using the ordered pairs as shorthand for the corresponding points on the surface.
@kancer9725
@kancer9725 4 жыл бұрын
Thank you for this videos,beacuse of you i am planning to study mathematics
@strippins
@strippins 7 ай бұрын
I spent four years doing a physics degree starting in 2003. KZbin existed since 2005 and this sort of content was certainly not available until after I finished. I always found the unengaging lectures difficult to follow, printed lecture notes missing insight and text books impossibly heavy. I wonder how much more I could have got out of that education had content like this been around to enhance conceptual understanding .
@nuclearcatapult
@nuclearcatapult 5 ай бұрын
So the reason I was having trouble visualizing a surface integral is because I'm not a 4-dimensional being. That makes sense.
@Kdd160
@Kdd160 4 жыл бұрын
Wow!! You explained this so nicely man!!!
@kamvc72
@kamvc72 Жыл бұрын
great video.. many things got cleared here.
@sreajan
@sreajan 3 жыл бұрын
Great Lecture Sir. Respect
@prateekkumar.1325
@prateekkumar.1325 4 жыл бұрын
U rock brother! Thanks a lot for making such videos. It inspires me a lot. Thank u vei much.!
@academicstuff548
@academicstuff548 Жыл бұрын
thanks for such clear explanation.
@celkat
@celkat 3 жыл бұрын
Thank you for your excellent explanation videos! 🙏 One issue is confusing me: 4:15 when you start explaining the parallelogram in terms of u and v, do you actually mean r(u,v), r(u+du,v) etc, given that this parallelogram is on the surface S?
@MuPrimeMath
@MuPrimeMath 3 жыл бұрын
Yes; we can think of taking the parallelogram in terms of u,v and evaluating r(u,v) for each corner.
@parniamotamedi2694
@parniamotamedi2694 5 ай бұрын
perfect explanation
@Wan-vp9tp
@Wan-vp9tp 3 жыл бұрын
thanks for this explanation video!
@saiakash707
@saiakash707 2 жыл бұрын
Excellent Video, Thanks a lot🎉
@alishaanjum1108
@alishaanjum1108 2 жыл бұрын
Beyond excellent😍😍
@anmolmishra4784
@anmolmishra4784 Ай бұрын
Amazing Thank you so much I do appreciate it ❤
@hikmatullahpakhtoon3694
@hikmatullahpakhtoon3694 4 жыл бұрын
Fair explanation.
@MohamadKasem-r9o
@MohamadKasem-r9o Ай бұрын
This is amazing the best exlpination I have seen until now. I just wondered why do we assume that dS is a parallelogram and not a square as only u or v is changing between each point. Why isn't dS written as du x dv?
@MuPrimeMath
@MuPrimeMath Ай бұрын
The reason it's a parallelogram is that we're looking at how changing the input parameters u,v affects the output point on the surface. Changing u and changing v will each move the output in a particular direction along the surface, and those two directions are not necessarily perpendicular, so the result will not necessarily be a square or rectangle.
@MohamadKasem-r9o
@MohamadKasem-r9o Ай бұрын
Ah alright. I thought u and v always moved in term of x, y, z, and not as their own vectors. Makes much more sense now. Thank you!
@mossy60661
@mossy60661 15 күн бұрын
thank you so very much may god bless you
@geniusmathematics9123
@geniusmathematics9123 3 жыл бұрын
Love u sir. Given 2 likes from two id...
@latifmuhammad8874
@latifmuhammad8874 Жыл бұрын
Thanks for the video. However, I found that the first surface integral is equal to 48π for some reason. What did I do wrong?
@samrachkem2801
@samrachkem2801 3 жыл бұрын
As far as I know, the order of double integral is not interchangeable. Maybe I could be missing some part of the video but which variable should I be integrate firstly when solving surface integral? Thank you very much!
@MuPrimeMath
@MuPrimeMath 3 жыл бұрын
See Fubini's Theorem
@eyuelbegashaw8609
@eyuelbegashaw8609 4 жыл бұрын
so what does the surface integral on scalar field and surface integral on vector field gives us ??
@jaydenc6472
@jaydenc6472 Жыл бұрын
Hi, may I know how to solve this, if we do not parameterize it, instead we use the formula dS=sqrt(1 + (dz/dx)^2 + (dz/dy)^2 )dA? What should we substitute in order to eliminate z?
@the.lemon.linguist
@the.lemon.linguist 20 күн бұрын
I understand that in the case of some curve r(t) that traces a curve, dr is a tiny change on r, and it can be found with r'(t)dr either by thinking of it (not very rigorously) as taking the dt from dr/dt and moving it over to the other side, effectively finding the "infinitesimal rise" by multiplying the derivative by an "infinitesimal run" or alternatively by thinking of it as converting a 0-form to a 1-form if you think of it in the nature of differential forms. In this case, would the analogy apply similarly with this? Would the partial derivative w.r.t. u times the differential du give that tiny change by similarly multiplying the rate by a tiny "run" of sorts?
@MuPrimeMath
@MuPrimeMath 20 күн бұрын
If the second variable v is held constant, then r(u,v) traces a curve in the variable u. Therefore the same reasoning applies as in the single-variable case as long as we assume that v doesn't change. So du times the partial derivative with respect to u gives a change in the curve along the u direction.
@the.lemon.linguist
@the.lemon.linguist 20 күн бұрын
@ ohhh, i see! thank you so much!
@mingdonghe9169
@mingdonghe9169 4 жыл бұрын
Thanks a lot!You are the best!
@iyadindia862
@iyadindia862 4 жыл бұрын
Does the magnitude of cross product in the surface integral have anything to do with the Jacobian..It seems to be similar ones
@MuPrimeMath
@MuPrimeMath 4 жыл бұрын
Yes, they are related! One way to think about a two-variable substitution (x,y) → (u,v) is to think of the original (x,y) region as a flat surface. Then the substitution is a parametrization that looks like r(u,v) = [ x(u,v), y(u,v), 0 ] If you compute the cross product rᵤ x rᵥ, it ends up being equal to the Jacobian in two dimensions!
@iyadindia862
@iyadindia862 4 жыл бұрын
@@MuPrimeMath Thats Cool😍💕
@andrewgraybar4984
@andrewgraybar4984 4 жыл бұрын
Riemann hypothesis, please.
@rivaille8867
@rivaille8867 5 ай бұрын
Beautiful 🎉
@pushkarsinghkaushik300
@pushkarsinghkaushik300 3 жыл бұрын
What is the difference between left hand side and right hand side
@learnsimple108
@learnsimple108 Жыл бұрын
thank you very much, ARE you s university professor? which university?
@ofbguppies2325
@ofbguppies2325 2 жыл бұрын
Great vid
@ranam
@ranam 3 жыл бұрын
This is also called shadow integral can you please explain that too
@abaidanwer8962
@abaidanwer8962 8 ай бұрын
Very nice
@ahmedelshiekh9536
@ahmedelshiekh9536 3 жыл бұрын
I have one problem.. can you solve it for me please?!
@LinhTran-uh6lt
@LinhTran-uh6lt 10 ай бұрын
is || ru x rv || = || rv x ru || thank you
@MuPrimeMath
@MuPrimeMath 9 ай бұрын
The cross product is anticommutative, meaning that b × a = -(a × b). As a result, the magnitudes of the two are equal.
@hmt001
@hmt001 3 жыл бұрын
Thank you
@danielvolinski8319
@danielvolinski8319 Жыл бұрын
The result of the last example is 12π not 9π.
@MuPrimeMath
@MuPrimeMath Жыл бұрын
Both of the integrals shown at 26:38 evaluate to 9pi
@danielvolinski8319
@danielvolinski8319 Жыл бұрын
@@MuPrimeMath OK, I see my error: the z in the first component of the vector field looks like a 2 so instead of z/x, I wrote 2/x.
@rohaniyer4672
@rohaniyer4672 4 жыл бұрын
yeo caltech class of 2024!!
@Satya1621
@Satya1621 2 жыл бұрын
Awesome
@kelfinmunene5941
@kelfinmunene5941 10 ай бұрын
I like this
@latifmuhammad8874
@latifmuhammad8874 Жыл бұрын
Oops I found it; I forgot to square the 4 in (4sin(theta))²
@latifmuhammad8874
@latifmuhammad8874 Жыл бұрын
...as y²
@ehsanAnsar628
@ehsanAnsar628 5 ай бұрын
Great
@derrickbecker9856
@derrickbecker9856 Жыл бұрын
Pretty sure not four dimensions… still two dimensions even though in 3D
@swaroopdewal4626
@swaroopdewal4626 4 жыл бұрын
You are wow...!
@irwanahmed001
@irwanahmed001 4 жыл бұрын
i going to faillllll!
@trigon7015
@trigon7015 4 жыл бұрын
tsaL
@sarkarsubhadipofficial
@sarkarsubhadipofficial 3 жыл бұрын
❤️
@bulldawg4498
@bulldawg4498 3 жыл бұрын
Sorry, but I'm disappointed in your explanation of a surface integral over a vector field ... I've seen better ...
23.5: Useful Surface Integral Shortcuts - Valuable Vector Calculus
10:34
20: Scalar Field Line Integrals - Valuable Vector Calculus
12:47
Mu Prime Math
Рет қаралды 23 М.
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
Surface Integrals
19:45
MIT's Experimental Study Group
Рет қаралды 261 М.
21: Vector Field Line Integrals - Valuable Vector Calculus
11:21
Mu Prime Math
Рет қаралды 8 М.
Math News: The Fish Bone Conjecture has been deboned!!
23:06
Dr. Trefor Bazett
Рет қаралды 215 М.
87 - Surface integrals of vector fields
29:01
הטכניון - מכון טכנולוגי לישראל
Рет қаралды 60 М.
25: Curl - Valuable Vector Calculus
14:59
Mu Prime Math
Рет қаралды 4,2 М.
Evaluating Surface Integrals
12:24
Professor Dave Explains
Рет қаралды 382 М.
What is Jacobian? | The right way of thinking derivatives and integrals
27:14