21: Vector Field Line Integrals - Valuable Vector Calculus

  Рет қаралды 8,062

Mu Prime Math

Mu Prime Math

Күн бұрын

Пікірлер: 21
@iyadindia862
@iyadindia862 4 жыл бұрын
A new way of introducing the line integral to me..Thanks for your efforts
@hashtagaroma7778
@hashtagaroma7778 3 жыл бұрын
watching right before my exam. you're the GOAT
@grouchyfluff
@grouchyfluff 4 жыл бұрын
Fantastic stuff. Going into my 4th year of aerospace engineering, I took Calc 3 ages ago and haven't seen ""line integrals"" like this since way back then. First 7 minutes of this video made more conceptual sense than my entire recollection of the latter half of that class. I'll definitely be checking out more videos in this series for a deeper understanding and a refresher on this topic. cheers!
@austinu
@austinu 2 жыл бұрын
This was very good, same as your other video on scalar line integrals. Thank you!
@samuelhafer7516
@samuelhafer7516 4 жыл бұрын
Well taught. Wish I had this when I took cal 3.
@briandwi2504
@briandwi2504 2 жыл бұрын
Another very clear and concise lesson. Thanks!
@abdeljalilpr2033
@abdeljalilpr2033 4 жыл бұрын
Very very good choise of subjects and i like tge way of analysis and simplification..ma shaa Allah!! Respect to you
@jatingarg1375
@jatingarg1375 2 жыл бұрын
Thank u sir ..love from India and much respect to you..♥️👍
@saqlainahmed4197
@saqlainahmed4197 4 жыл бұрын
Sir awesome work 👌👌
@domenscreativemaking3942
@domenscreativemaking3942 3 жыл бұрын
Thank u so much sir
@GauravKumar-np2qm
@GauravKumar-np2qm 2 жыл бұрын
amazing.
@moondxstq4297
@moondxstq4297 9 ай бұрын
Can you make a video about solving Circulation involving finding Potential function?
@denisovtenetova6125
@denisovtenetova6125 2 жыл бұрын
amazing!
@nathanisbored
@nathanisbored 4 жыл бұрын
Hadn’t heard it called a ‘scalar field line integral’ before. my teacher said he didn’t like the way the book explained it and wrote his own notes, and in his notes he called it the ‘tangential integral’ (the other one being called the flux integral). The difference between the two is that one is F dot T and the other is F dot n, where n is normal to the curve
@arkamninguno8446
@arkamninguno8446 4 жыл бұрын
Hola, como ya sé que hablas español. Te quería decir que este tema de integrales de línea está muy interesante, también lo estoy estudiando y espero que llegues a la parte de teorema de stokes porque hay una cosa que no entiendo sobre ese teorema. Gracias y saludos por tu esfuerzo. 👍👍😎
@A_Box
@A_Box 2 жыл бұрын
Better than my old University notes. LOL
@danw6406
@danw6406 2 ай бұрын
Hi, i have a question depending on the difference about scalar to vecotr line integral. In scalar line integration we use magnitude of r-prime * dt, because we are interested in the small change along the curve, which i understand. But in vectorfield line integration we take r-prime * dt without the magnitude. Like i understand you, is that we want to sum the projection of our vectorfiled at a given point on the curve onto the tangential unit vector of the curve. Now to my question shouldnt the r-prime here be a unit vector as well, so we can measure this projection correctly? Because you even mentioned that big T needs to be a unit vector. To my understandig r-prime gives us the speed on a given point on the curve which is not always of the length one. Sorry for my english, im from Germany.
@MuPrimeMath
@MuPrimeMath 2 ай бұрын
The formulation of the integrand as F(r(t)) ⋅ r'(t) dt is equal to F ⋅ T ds. They're both the exact same integral. We often use the form F(r(t)) ⋅ r'(t) dt simply because it is easier to compute for a given problem. We do the same thing for the scalar field line integral as well. The unit tangent vector T points in the direction of r', so r' = |r'| * T. It's the same conversion in both cases. Whether r' is shorter or longer than T is accounted for by how fast the parametrization r traverses the curve. If r' is larger then the parametrization will traverse faster, thus assigning less weight in the integral. That cancels out the fact that F ⋅ r' is larger if r' is larger.
@danw6406
@danw6406 2 ай бұрын
@@MuPrimeMath That makes total sense to me now. Thanks for answering so fast. Just a tangent, would it be a right thought to have, that my r´t will be always of unit length 1 if i parametrize my curve after curve length? Im just curious. Since with a parametrized curve c(t) for example the output matches the input. Like c(8)=8, and so on. So my r´t which consists of dc/dt will be always 1. Im sorry if I monopolize your time. But the help in my university is not as good as you just did. My professor is shy and my tutors for math are worse than me. 😞Thanks again!
@MuPrimeMath
@MuPrimeMath 2 ай бұрын
Yes - in fact a curve r(t) is arclength parametrized if and only if |r'(t)| = 1.
@danw6406
@danw6406 2 ай бұрын
@@MuPrimeMath Ty very very much!
22: Gradient Theorem - Valuable Vector Calculus
10:33
Mu Prime Math
Рет қаралды 10 М.
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН
Line Integrals of Vector Fields  //  Big Idea, Definition & Formula
8:40
Dr. Trefor Bazett
Рет қаралды 178 М.
20: Scalar Field Line Integrals - Valuable Vector Calculus
12:47
Mu Prime Math
Рет қаралды 23 М.
25: Curl - Valuable Vector Calculus
14:59
Mu Prime Math
Рет қаралды 4,1 М.
6: Laplace Transforms - Dissecting Differential Equations
19:54
Mu Prime Math
Рет қаралды 43 М.
line integral of a curve (KristaKingMath)
16:25
Krista King
Рет қаралды 140 М.
Intro to VECTOR FIELDS // Sketching by hand & with computers
12:09
Dr. Trefor Bazett
Рет қаралды 117 М.
What is mathematical thinking actually like?
9:44
Benjamin Keep, PhD, JD
Рет қаралды 47 М.
Introduction to Line Integrals - Focus on Parameterizing Curves
13:18
Nakia Rimmer (CalcCoach.com)
Рет қаралды 31 М.
What is a LINE INTEGRAL?  // Big Idea, Derivation & Formula
14:02
Dr. Trefor Bazett
Рет қаралды 261 М.
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН