Pls provide link for the playlist for the audio channel fixed. Thanks
@yaprakonder75634 жыл бұрын
Dr. Strang is precious, protect him at all costs.
@ahbarahad3203 Жыл бұрын
Ain't no one coming after him don't worry
@ADITYAMISHRA-g1pАй бұрын
The best course of linear algebra on the entire internet. I have been enjoying the course from the beginning. It helped me a lot.
@nenadilic94863 жыл бұрын
1:49 Sometimes I watch his classes several times to make things settle in my mind, but sometimes just because I want to enjoy the humor.
@godfreypigott2 жыл бұрын
I have never heard him say anything remotely funny. He is as dry as they come.
@abdullahaddous7081 Жыл бұрын
@@godfreypigott he sometimes does tickle the funny bone in me and make me giggle
@sword8446 Жыл бұрын
00:12 Symmetric matrices have real eigenvalues and perpendicular eigenvectors. 03:33 In the symmetric case, the eigenvector matrix becomes orthonormal. 10:23 Symmetric matrices have a unique property when it comes to eigenvalues and eigenvectors. 13:53 The video discusses the relationship between symmetric matrices and positive definiteness. 20:21 Eigenvalues of a symmetric matrix 23:18 Symmetric matrices are good matrices, whether they are real or complex. 29:40 Finding eigenvalues of a symmetric matrix is a complex and time-consuming task. 32:22 Symmetric matrices have a connection between the signs of the pivots and the eigenvalues. 38:44 When a symmetric matrix is positive definite, its eigenvalues are positive. 41:41 Symmetric matrices have positive sub determinants and a positive big determinant. Crafted by Merlin AI.
@georgesadler78303 жыл бұрын
This is another fantastic lecture by the grandfather of linear algebra. Symmetric and Positive definite matrices pops up in systems and control engineering.
@pipertripp6 ай бұрын
and in statistics!
@dalisabe622 жыл бұрын
A living master of linear algebra who is not intimidated by spontaneous insights as he articulates the deeper meanings hidden in the mysterious mathematical creature called matrices.
@garylai47845 жыл бұрын
positive definite matrices start at 35:14
@naterojas92725 жыл бұрын
Is anyone else amazed at how he lets you see both the forest AND the trees... Simply the most elegant exposition of mathematics I have ever seen...
@shabnamhaque20033 жыл бұрын
Where exactly in the lecture did you relate to understanding trees and forest? I'm a beginner so I couldn't get it
@sabashoshiashvili83013 жыл бұрын
@@shabnamhaque2003 I think he meant that Mr. Strang does a good job at explaining particular topics(trees) as well as how they relate to and fit in with each other(forest).
@mishelqyrana71873 жыл бұрын
The perfect metaphor.
@robinamar64543 жыл бұрын
Thanks MITOpenCourseWare for uploading these beautiful lectures. Even remote students get taught by Prof. Strang. :)
@exxzxxe Жыл бұрын
Professor Strang- a gentleman and a scholar!
@noahchen3 жыл бұрын
1:50 My favorite part of this video. "PERPENDIC|| ULA ||R" =========== ====
@naterojas92725 жыл бұрын
9:00: "That's what to remember from this lecture..." Me: "Ight boys n gals. We can skip to the next lecture"
@naterojas92725 жыл бұрын
Finishes lecture. Never mind... Lecture (as always) was awesome.
@고원희-q8s5 жыл бұрын
1:49 "PERPENDIC---ULA---R"
@sampadmohanty85734 жыл бұрын
ULA - Understanding Linear Algebra
@didyoustealmyfood87293 жыл бұрын
A= LU
@anindyasundargoswami89573 жыл бұрын
@@didyoustealmyfood8729 No ... I didn't steal your food
@danielha78955 жыл бұрын
The best lecture Ive ever seen, Thank you very much!!!
@RahulMadhavan5 жыл бұрын
@5:57 - looks like class rooms at MIT have ledges to jump off from if you don't understand anything :-)
@findmeifucan27193 жыл бұрын
@E 😂😂
@nurzaur3 жыл бұрын
43:00 - Summary
@existentialrap521 Жыл бұрын
His move at 1:50 is legendary. Gang
@ianwilson93253 жыл бұрын
this guy is a genius.. holy moly he has a quick mind
@vasuverma50139 ай бұрын
He is an absolute genius, loved the way he teach 😊
@phononify Жыл бұрын
highly sympathic ... I would have loved to study at the MIT .. great, really
@pourkavoosmedicalllcpourka74292 жыл бұрын
In Linear Algebra, Professor Strang is God.
@lukes.97813 жыл бұрын
He never erased "ULA" off the wall.
@samuelyeo54505 жыл бұрын
27:28 I don't understand why they are considered projection matrices. Projection matrices from my limited understanding satisfy P=P^n, where n is any real integer. Projection matrices project a vector onto a certain subspace. Back in lecture 15, he derived P = A (A^T A)^-1 A^T. In the context of this lecture, A is an orthogonal matrix. Since A^T = A^-1 , P = A A^T. Does he therefore mean that q q^T are projection matrices in this sense?
@たま-z6n9k5 жыл бұрын
He probably means that q q^T is the projection matrix onto the subspace spanned by the vector q (for each subscript i=1, 2, .... of q_i). In that case, each projection matrix P will be q(q^T q)^-1 q^T, where actually (q^T q) denotes the dot product of q and q (i.e., the squared length of the vector q), which is the real number 1, since q is a unit vector. Thus, (q^T q)^-1 denotes the inverse of the real number 1, which is of course the real number 1 itself. Consequently the projection matrix P gets reduced to q q^T . That's what I think. ■
@Joshiikanan5 жыл бұрын
Okay, you're almost right. If you remember he taught that projection on the line through a vector a is (a a^T)/(a^T a). This is the projection matrix. This is the equivalent result when you're projecting on 1-D space. Now imagine when a=q (a unit vector). The denominator which is a scalar quantity is just 1 since (q^T q)=||q||^2=1. So projection matrix is nothing but (q q^T). I hope this helps you.
@theindianrover20074 жыл бұрын
@@Joshiikanan Thnks a lot
@charlesmayer20473 жыл бұрын
@@Joshiikanan The space it's projecting on is the eigenvector space, and each projection (P1,P2,...Pn) is projecting the eigenvalue into its assorted eigenvector, which is *one* vector, so the space generated by that vector is unidimentional, even though the vector itself is of dimention ''n'', n being the number of eigenvalues of the matrix A.
@wangxiang20442 жыл бұрын
The number of positive pivots may not equal the number of positive eigenvalues. Take the matrix [1,0;-1,0] for example: without row exchange ,it reduces to [1,0;0,0], but with row exchange it reduces to [-1,0;0,0]. Odd number of row exchanges will change the sign of determinant and therefore change the number of negative eigenvalues. Assume that there is no row exchange and no multiplication of a row by a (negative) scalar, then the result holds.
@penny90533 жыл бұрын
30:57 "Matlab will do it, but it will complain" what a humour xd
@tanyach25824 ай бұрын
symmetric matrices (A=A conjugate transpose) have real eigenvalues and orthogonal basis can be chosen symmetric matrices can be perceived as combination of projection matrices onto its basis still in symmetric matrices number of positive pivots=number of positive eigenvalues for positive definitive matrices all pivots are positive(the test) and all eigenvalues are positive(the outcomes) all sub determinant are positive
@pipertripp6 ай бұрын
The linalg GOAT!
@kewtomrao3 жыл бұрын
Are those empty seats??Please let me sit in one of those and I swear I ll attend everyday!!
@matthewjames75133 жыл бұрын
35:35 He seems to claim that positive definite matrices must be symmetric. But that' cant be true.. [2,0;2,2] is positive definite but not symmetric!
@nguyenbaodung16033 жыл бұрын
12:54 Lol professor could actually do that, but a little bit different by instead of the conjugate equation, we can use orginal equation. He actually pointed it out but mistook it a little bit. Just multiply both side of the tranpose equation by x, change A*x to Lambda * x, then we end up with the equation where Lambda = Conjugate(Lambda) . I actually followed his guide that moment and it worked, but he instead ended up with a mess XDD.
@dwijdixit78102 жыл бұрын
Thank you, sir Strang!
@danf81722 ай бұрын
What’s with the claim that repeated eigenvalues have eigenvectors that are independent/span a plane? Not always, only if matrix is diagnalizable
@geoffreyalvarez54015 ай бұрын
deep insight with deep humour
@lisadinh4 жыл бұрын
@39:29 how did he get rad 5 so quickly. I heard “16-11” I don’t know how he got the 16. If he used the quadratic formula, that was some light speed calculation of b^2-4ac, sqrt, and divide by 2
@lisadinh4 жыл бұрын
Nvm. After mulling over it I have figured it out
@RenanRodrigues-yj5tz4 жыл бұрын
Lisa Dinh never thought of doing it like that. Now I’m always gonna use it haha
@lisadinh4 жыл бұрын
@@RenanRodrigues-yj5tz ikr. He pulled 4 out from (b^2-4ac) right away and sqrtted it to quickly cancel from the 2 in 2a in the denominator. (b^2 - 4ac) = 4((b^2)/4 - ac) ---> (64 - 4(11)) = 4(16 - 11). promptly recognized 64 goes into 4 sixteen times.
@mreengineering49353 жыл бұрын
دكتور من اروع ما يكون
@johnk81743 жыл бұрын
"forgive me for doing such a thing" (looks at book)
@pranavhegde64703 жыл бұрын
which is again written by the legend himself :D
@ramkrishna32564 жыл бұрын
What if any Eigen value is repeated??? I guess that we still get n-orthogonal Eigen vectors. The reason: We can relate it to the algebraic multiplicity and geometric multiplicity of an Eigen value. 🙂
@findmeifucan27193 жыл бұрын
😅
@Mark-nm9sm Жыл бұрын
what a funny way to open an exciting class
@All_Kraft7 ай бұрын
Does anybody can explain, why the number of the pivots is equal to the number of the eigenvectors?
@agarwaengrc Жыл бұрын
I don't get it. Since symmetric matrices are always diagonalizable, then it looks like they should always be invertible too (since it's eazy to say e.g. A=QΛQ' and so A'=QΛ'Q'). But they're not, for example a matrix with all ones or all zeroes is symmetric (and obviously not invertible). What am I missing here?
@agarwaengrc Жыл бұрын
OK, I'm missing that it would have a zero eigenvalue, which means that there's no way to construct Λ'
@aamirfaridi37835 жыл бұрын
energetic professor.
@slicenature97345 жыл бұрын
Hi, at 39:00 how did he so quickly find the roots of the equation?
@ayangangopadhyay75005 жыл бұрын
He used the quadratic formula for solving the equation I believe
@young-jinahn69715 жыл бұрын
Trace(sum of diagonal values) is equal to sum of two lambdas
@0polymer04 жыл бұрын
When a=1, the quadratic formula reads: -b/2 +- sqrt( (b/2)^2 - c )
@alberto30713 жыл бұрын
What about decomposition into hermitian and skew-hermitian, how could we visualize that?
@원형석-k3f3 жыл бұрын
28:30
@eduardosdelarosa55395 жыл бұрын
Wait now i have a question supposed i got the eigenvalues if i used elimination and then i got the eigenvalues again. Would they be the same?
@dennisjoseph45284 жыл бұрын
Your Eigen vectors will definitely change. This is how I understood this. A*x=l*x. Now suppose you change A, so you multiply a new matrix E on the left hand side that changes A, so E*A*x=l*E*x. Eigen values may change by a factor.
@eduardosdelarosa55394 жыл бұрын
@@dennisjoseph4528 thanks dude from México.
@lounes9777 Жыл бұрын
Dr Strange ALWAYS THE BEST
@daniel_liu_it3 жыл бұрын
16:20:"where did he put his good god white foot on lol🤣"
@samuelleung99305 жыл бұрын
Man, u know why since lecture 23 or sth the views sinks🤣: u have to read the book to clarify to yourself about the important points the Prof Strang has leave there purposely, which is actually elegant😀 now I go to read the book to find out why the sign of pivots are the same as the of EV..
@saubaral4 жыл бұрын
i think its coz these are new videos with audio channel fixed. i don't think the views before 9 months or so were counted here
@utkarsh-21st5 жыл бұрын
Excellent!
@mikebull90474 жыл бұрын
Eigenvalue lam=1.0 leads to a term exp(lam t) = exp(t) grows out of bound. Or am I missing the point. In the last lecture lam= 0 became the steady state value.
@ahmetcanogreten73674 жыл бұрын
lambda=0 is steady state of differential eqns lamba=1 is of difference eqns.
@胯下蜈蚣長老4 жыл бұрын
i thought the "cular" was a projection, NO! He wrote it on the wall lol
@danishji2172 Жыл бұрын
16:21 Blonde Guy with mohawk places his foot on the chair in front. Do this in a SE Asian country and have the duster come flying at your face. XD
@Mimi541664 жыл бұрын
35:17
@Feanordark3 жыл бұрын
Can anybody help me to see how is a vector time his transpose a projection? Thank you very much in advance :) Btw, amazing courses, you're truly lighting the way, Mr. Strang!
@peterlee17833 жыл бұрын
please read chapter 4.2 projection. project onto a line
@cvanaret2 жыл бұрын
If q has length 1, P = q q^T is symmetric and P^2 = P
@dalisabe622 жыл бұрын
Think of a vector as a row vector and it’s transpose as a column vector. When you do the multiplication you are doing the dot product of two vectors, which is a scalar. If you recall from an introduction course in math like calculus one, precalculus or college physics I, you know that when you dot product two vectors, say a.b =|a||b|cos(theta) where theta is the angle between the two vectors a and b. The smaller theta is, the bigger cos(theta) is, that is, the bigger the projection of the vector a onto vector b. Think of the projection as the length of shade of one vector on the ground. Hope that helps.
@saubaral4 жыл бұрын
All matrices matter, no such thing as a good or a bad matrix :P
@adhoax35214 жыл бұрын
Good are ones in which we easily see beautiful patterns on instants where others show no such patters
@saubaral4 жыл бұрын
@@adhoax3521 is this not a clear case of matrix discrimination. Or is this how we get discriminants. :P
@marsfrom82064 жыл бұрын
what is the mean "sines of the eigenvalues"? Thanks,
@이승훈-u8f4 жыл бұрын
not sines but signs, there is caption's error
@mitocw4 жыл бұрын
Good catch! Thank you for pointing that out. The caption will be corrected.
@marsfrom82064 жыл бұрын
@@이승훈-u8f Thanks
@jarp55817 ай бұрын
31:27😂😂😂
@원형석-k3f3 жыл бұрын
대칭 행렬의 경우 피봇들의 부호와 고유값의 부호가 같다.
@bashiruddin38913 жыл бұрын
What's a pivot?
@godfreypigott2 жыл бұрын
Oh dear ... back to the beginning for you.
@thackthack4099 Жыл бұрын
For anyone else that needs this, Strang is talking about turning the matrix into Echelon form without Row Reducing all the leading entries to 1.
@daniel_liu_it4 жыл бұрын
here i am, still seven videos so far,
@findmeifucan27193 жыл бұрын
What 😳😱
@mreengineering49353 жыл бұрын
رائع
@sdavid19569 ай бұрын
when he has not enough space to write perpendicular😂😂😂😂😂