6. L1 & L2 Regularization

  Рет қаралды 41,266

Inside Bloomberg

Inside Bloomberg

Күн бұрын

We introduce "regularization", our main defense against overfitting. We discuss the equivalence of the penalization and constraint forms of regularization (see Hwk 4 Problem 8 for a precise statement). We compare regularization paths of L1- and L2-regularized linear least squares regression (i.e. "lasso" and "ridge" regression, respectively), and give a geometric argument for why lasso often gives "sparse" solutions. Finally, we present "coordinate descent", our second major approach to optimization. When applied to the lasso objective function, coordinate descent takes a particularly clean form and is known as the "shooting algorithm"
Access the full course at bloom.bg/2ui2T4q

Пікірлер
1. Black Box Machine Learning
1:38:44
Inside Bloomberg
Рет қаралды 103 М.
Regularization Part 1: Ridge (L2) Regression
20:27
StatQuest with Josh Starmer
Рет қаралды 1,1 МЛН
Caleb Pressley Shows TSA How It’s Done
0:28
Barstool Sports
Рет қаралды 60 МЛН
ССЫЛКА НА ИГРУ В КОММЕНТАХ #shorts
0:36
Паша Осадчий
Рет қаралды 8 МЛН
8. Loss Functions for Regression and Classification
41:14
Inside Bloomberg
Рет қаралды 22 М.
23.  Gradient Boosting
1:24:35
Inside Bloomberg
Рет қаралды 21 М.
27. EM Algorithm for Latent Variable Models
51:17
Inside Bloomberg
Рет қаралды 20 М.
7. Lasso, Ridge, and Elastic Net
24:12
Inside Bloomberg
Рет қаралды 23 М.
Regularization | ML-005 Lecture 7 | Stanford University | Andrew Ng
39:07
Machine Learning and AI
Рет қаралды 8 М.
3. Introduction to Statistical Learning Theory
46:47
Inside Bloomberg
Рет қаралды 55 М.
12. Feature Extraction
1:14:03
Inside Bloomberg
Рет қаралды 19 М.
Caleb Pressley Shows TSA How It’s Done
0:28
Barstool Sports
Рет қаралды 60 МЛН