I express my heartfelt gratitude for such clean-concept videos.
@scokim Жыл бұрын
This is a great tutorial showing how to implement test-train-split and cross-val. Also, a neat way to batch compare performances of the models in for-in loop. Very nice !!
@anushka.narsima2 жыл бұрын
I watched a couple vids and each sent a different split into the cross_val_score so I was confused on which one was right, thank you for clearing it up!
@kartikbhange6389 Жыл бұрын
👍Very nice video.. All confusions are destroyed 😊
@tosinomotayo20972 жыл бұрын
This is a great tutorial. Simple and clear explanation. Thank you for sharing your knowledge.
@elisahorton483311 ай бұрын
I love the speed at which you teach and how thorough you are. Thank you for this!
@mahamadoutogola40015 ай бұрын
You explained very well ❤
@TanzinaHossoinАй бұрын
excellent explanation
@R.Srimathy10 ай бұрын
Sir, Thanks for the clear explanation. I have a question, In 27:30 you are saying that we can use "either of the one (i.e.) cross_validation or train_test_split. Whether you mean we do not need to use train_test_split at all and directly we can use cross-validation to check the model? If that is the case splitting the dataset is the basic and important step right for machine learning right? Please correct my understanding
@margothabet9938 Жыл бұрын
U r the best 👍
@arshad17812 жыл бұрын
Thanks 👍 for sharing free knowledge 😉
@kaviyapriya63296 ай бұрын
Well explained bro
@balajiabhi90392 жыл бұрын
All these I was afraid of listening these cross validation and hyper parameter tuning concepts.but watching your tutorial on KFCV made me feel very intresting and using this concept\. and entering the Hyper paramter tuning vid. lets hope same kinda content I could get for that too. Anyhow thanks a lot siddhu for providing such a valuable and meaningful content.
@Siddhardhan2 жыл бұрын
😇😇
@vikashkumargupta47922 жыл бұрын
Thank you for a wonderful explanation
@chiragahlawat4656 ай бұрын
Sir apart from classification problem, is stratify also useful in regression problem?? Thank you Sir for this beautiful explanation ❤
@mastermatt60908 ай бұрын
very helpful thank you very much
@tanmaygupta82888 ай бұрын
good explanation
@kandiahchandrakumaran8521 Жыл бұрын
Excellent video. Well done. Are you able to create a video to generate nomogram for customer churn? Thank you.
@user-yr9sf2yr3n Жыл бұрын
great! thank you
@adriandominiquearante3197 Жыл бұрын
Thanks for this concise explanation. Is the ppt presentation shareable?
@andytiw_ Жыл бұрын
thanxs man
@sergioreece63752 жыл бұрын
Thank you sir.
@siva_reddy12_136 ай бұрын
Thankyou
@SathishKumar-rr1nq2 жыл бұрын
Super ..
@Q9000-s3s2 жыл бұрын
Thanks for the tutorial! I'm a beginner in coding, please will you tell me how you would print a report after this step on your video "print(cv_score_lr)" or at any stage if possible? I tried in this way, print(classification_report(y_test, cv_score_lr)), but it's not working?
@satire6344 Жыл бұрын
I am looking for corss validation and grid search for regression but not found any examples on youtube.. if you can provide that would be excellent. Thanks in advance
@ayushmangupta6682 Жыл бұрын
Can we use Cross Validation on Regression problems also
@heyrobined2 жыл бұрын
I have seen some codes where people use x_train and y_train instead of X and Y. why is that ? is it a wrong way ? what will happen if we use X_train and y_train?
@balajiabhi90392 жыл бұрын
here we are using k-fold cross validation which is alternative of train test split. In case of TTS we will have test data and train data which are subsets of actual dataset. In case of TTS we manually split for training and testing purspose but in case of KFCV it internally splits the datasets and finds the accuracy. I suggest you watch earlier video for better understanding @Hey Robin
@MarioSchwaiger11 ай бұрын
How many advertisements are in this video??
@InsPiringMegamind Жыл бұрын
Why here we comparing scores.mean and test score Why here we use cross validation And why we calculate scores.mean Please explain If scores.mean() not equal to test score 1)!= 2)< 3)>