Dont forget to subscribe my vlogging channel to see motivation and Data Science Q&A videos. kzbin.info/door/jWY5hREA6FFYrthD0rZNIw
@rudrakshkumawat17033 жыл бұрын
Hi Krish me and my team working on cloud cost forecasting problem for our organization we have five different vendors azure,aws , snowflake, Databricks,gcp databricks can make videos on this how cloud costs works because we are facing challenges like that we have very less quality data of 6 months each of them CSV file which includes daily based data @krish
@hassantate12713 жыл бұрын
I know it's quite off topic but do anyone know of a good place to watch newly released movies online?
@rowancade90953 жыл бұрын
@Hassan Tate Flixportal
@hassantate12713 жыл бұрын
@Rowan Cade thank you, I went there and it seems like a nice service :D I appreciate it!
@rowancade90953 жыл бұрын
@Hassan Tate no problem :D
@rog00793 жыл бұрын
We need more *All in 1 video* tutorials !! Great work as always !!
@rhevathivijay713 жыл бұрын
Even in college days.. I dint go to class before 10 ..minutes.. But am here waiting even before 15 minutes... Hats off to you krish sir and sudhanshu sir... for DS and ML aspirants..
@samselvaraj81712 жыл бұрын
cringe af
@sachinpathania14653 жыл бұрын
Thanks Krish for this video, i was looking for such content from long time, i had many doubts in K fold and LOOCV, finally all doubts got cleared.
@aparachitaparachit3563 жыл бұрын
best trainer... Mr kris sir
@rambaldotra22213 жыл бұрын
Explained everything like Butter. Superb Sir.
@sonnix31 Жыл бұрын
Thank you. You are my hero!
@lorizhuka69383 жыл бұрын
Thank you Sir
@radhakrishna.kalluri71922 жыл бұрын
Good work...
@eramitjangra46602 жыл бұрын
train test split also has option of stratify will that be useful for imbalance dataset
@rohitjagdale46483 жыл бұрын
Thanks for the video. Please make video series on pyspark Mllib.
@satyamtripathi17323 жыл бұрын
krish naik sir plss make a video on light gbm and catboost plsss sir apko dil se apna bada bhai maanta hun agar apne nhi banayi video toh main samaj jaoga ki aap mujko chota bhai nhi maante
@dhairyasansanwal39623 жыл бұрын
ok
@itsme16742 жыл бұрын
Thanks 🙏
@Vinit_Gambhir7 ай бұрын
Thanks ❤
@sunitaskitchen63353 жыл бұрын
please make a video on LR classifier trained with ABC algorithm
@3rd_Son Жыл бұрын
thank you
@MrKevZap Жыл бұрын
7:22 Aren't we supposed to use X_train and Y_train instead of X and y in the parameters of cross_val_score function?
@rajeevnayantripathi53702 ай бұрын
cross_val_score function doesn't require separate training and test sets to be explicitly defined. Instead, it handles the splitting internally based on the cross-validation strategy you provide
@AI-LearnAndEarn3 жыл бұрын
When will you make video on Bert ? I recently completed watching your NLP playlist and now I am waiting for the bert session.
@anshtandon66739 ай бұрын
Sir for the imbalanced Dataset, can't we first handle the imbalance and then do KFold test?
@shubhamchoudhary54613 жыл бұрын
Sir , in machine learning suppose if the model is overfitted & we apply k-fold cross validation on top of that model k-fold(10) , then we get to see lots of variation in cross validation scores right ?. Such as Score = [ 40, 80 , 70 , 80 , 50 , 83.2 , 81,84 ,.......] Means , here diffn between highest & lowest accuracy is ( 84 - 40 = 44) which is very high , means our model is overfitted & not capable to perform on unknown data situation , hence we need to regularise it &do hyperparameter tuning . Make me correct .. Thank you!!!!..
@pavankumarchahar3 жыл бұрын
Please upload a Video about different Imbalanced Dataset and how to handle techniques , Various feature engineering approaches etc.
@vaibhavkhobragade97733 жыл бұрын
Thank you @Krish for such a great explanation. I have a question, cross_val_score(model, X, y, cv = k_fold_validation) we are passing X and y from original data without using training data. We also assume that X and y have missing values. If we do imputation on X and y, is there any data leakage problem in cross-validation? if it is how could we handle it?
@vishalk89053 жыл бұрын
It is important to keep in mind that cross-validation is not a way to build a model that can be applied to new data. Cross-validation does not return a model. When calling cross_val_score, multiple models are built internally, but the purpose of cross-validation is only to evaluate how well a given algorithm will generalize when trained on a specific dataset
@kekkaigenkei2 жыл бұрын
In that case use pipeline and gridsearchcv
@gwapdamathtutor21083 жыл бұрын
What about nested cross validation method?
@sachinpatil70883 жыл бұрын
Sir please same me ...agar Mai python sekh rahe hua to uska liye front end aane jarure hey Kya like HTML,css, JavaScript and frameworks... help me please
@aimen18233 жыл бұрын
Hello Krish, can you make a session on how to create Ensemble Model(implementation)
@wahabali8282 жыл бұрын
you are greate
@shilpaprusty33193 жыл бұрын
Sir please mAke videos on Bayesian optimization
@himanshu80062 жыл бұрын
This is great, thanks by how to use this to predict? I am struggling to apply this on the test data set, can you pls help ?
@amitroy29762 жыл бұрын
What after cross validation? To train our model which fold of data we have to take?
@hudaali6596 Жыл бұрын
Please I need classification multi images by crocs validation
@TJ-wo1xt2 жыл бұрын
nice one.
@debatradas15973 жыл бұрын
Thanks
@mmavadat89442 жыл бұрын
How to use k fold For image dataset folder
@add-wisehaalathakikatkeanu53422 жыл бұрын
can you show how to use k-fold for 4 class problem with 10 samples each
@nishikantgurav45003 жыл бұрын
krish, in k fold cross validation code you passed directly X and y without splitting so how can the model will know what will be the percentage of training and testing data? cv=10 will take 10 random_states that is each random state is having different data that will give 10 different accuracies. But my question is that how can the model know the percentage of splitting? Is we have to split data with train_test_split giving percentage of splitting and then cross validate with cv=10? please help in this.
@vishalk89053 жыл бұрын
It is important to keep in mind that cross-validation is not a way to build a model that can be applied to new data. Cross-validation does not return a model. When calling cross_val_score, multiple models are built internally, but the purpose of cross-validation is only to evaluate how well a given algorithm will generalize when trained on a specific dataset
@harikrishnakokkula32073 жыл бұрын
hii sir , plz do a video on KD TREE, Ball tree
@placements_exe12373 жыл бұрын
Cross validation 3:00
@YavuzDurden2 жыл бұрын
Hi. Why we not just select this 0.98 scored dataset. If we want to choose this 0.98 scored dataset how we can do this? I mean how to achive this dataset scored as 0.98?
@yunpengliu40723 жыл бұрын
Dear sir I'm a big fan of your videos but just a little suggestion, if it's possible could you please change the theme music at the begining which always makes me a little scared.
@sonalijain34973 жыл бұрын
Krish make a detailed vedio on EDA
@shubhamchoudhary54613 жыл бұрын
Mam please check EDA playlist ..
@vijayananth10533 жыл бұрын
B - Benign (Non-cancerous). It's not a type of cancer M - Malignant (Cancerous)
@gwapdamathtutor21083 жыл бұрын
I hear doing cross Val for entire dataset is wrong . Can you explain why not using it in training set
@atakanbilgili43732 жыл бұрын
Yes, my knowledge suggest the same. I think it is due to data leakage. I learnt as you should keep test data until the very end (final prediction).
@tas90403 жыл бұрын
Please start advanced ML DL playlist
@gayanthadilshan6884 Жыл бұрын
❤
@rajeevmayekar17753 жыл бұрын
roc_auc_score intuition and implementation video link