Fantastic lecture... i am so lucky to watch and learn.... i am an ordinary mother of two little girls and recently finding myself experiencing full of joy learning linear algebra. It is all happened to me beacuse of wonderful lecturer and mit. thank you for sharing with us. I am going to continue to learn. Many thanks from korea.
@patf97703 жыл бұрын
MIT has still got it. What a time to be alive that we can watch this for free
@brendawilliams80623 жыл бұрын
I am sure happy about it.
@SheikhEddy5 жыл бұрын
Thanks for the lecture! I've tried to learn these things before and gotten out more confused than I was when I came in, but Dr. Strang's approach makes it all seem so simple!
@kristiantorres10803 жыл бұрын
Who dares to dislike this masterpiece of a lesson?
@iwonakozlowska61345 жыл бұрын
The "idea" of orthogonal projection allowed me to understand the Christoffel symbols. I "studied" all the lectures on MIT 18.06 but I am still discovering the linear algebra anew. Thanks G.S. , thanks MIT.
@abay6692 жыл бұрын
I wish u were my professo Mr Strang, but hey, I have u as my Professor here online: thank you very much for ur elegant explanation. Wish u good healt and long live Mr Strang
@shiv0935 жыл бұрын
lecture starts at 5:18
@oldcowbb5 жыл бұрын
thanks, i have 5 more minute to study for the final now
@alecunico4 жыл бұрын
Hero
@ryanjackson0x3 жыл бұрын
I am not skipping anything from Strang
@georgesadler78303 жыл бұрын
Professor Strang thanks for showing different ways to Solve Least Squares problems in linear algebra and statistics. Least Squares is used every day to fit data.
@chiahungmou73512 жыл бұрын
Last two minutes for Gram-Schmidt is really remarkable, 2 mins hardly time to see the heart of that mathematic machine.
@mengyuwang51595 жыл бұрын
One thing in question in the lecture is that Ui but not Vi is in the column space of A. Vi should be in the A's row space.
@张颖恺 Жыл бұрын
Thanks, I agree with u. I get trouble when I first see it
@SphereofTime6 ай бұрын
5:41 least squared
@daweedcito3 жыл бұрын
Thought Id be watching for 5 minutes, ended up staying for the whole class...
@heidioid3 жыл бұрын
bookmark Least Squares Problem 23:00
@omaraymanbakr36646 ай бұрын
ruthlesss 25 people have disliked this video , who dares to dislike a lecture by prof Strang!!
@thatsfantastic313 Жыл бұрын
Mathematicians teach machine learning way better than machine learning experts do, lol. Hats off to Prof. Strang
@ajiteshbhan4 жыл бұрын
At 46:00 professor says SVD in this case is neither side inverse but Right side is one side inverse, then he says at end under independent columns SVD gives same result as Guass, but sigma matrix in pseudo inverse should still have missing values how will they give same result?
@yuchenzhao64114 жыл бұрын
Under the independent columns assumption, A has left-inverse, and it's form is exactly same as the Guass's method.
@dohyun00475 жыл бұрын
in notice box why both of equations don't produce same identity matrix? 43:30
@jayantpriyadarshi92665 жыл бұрын
Because you cannot open the bracket in the second expression. As the inner matrices are not square and thus they don't have an inverse.
@dohyun00475 жыл бұрын
@@jayantpriyadarshi9266 thank youuuu
@jayantpriyadarshi92665 жыл бұрын
@@dohyun0047 no worries bro.
@matheusvillaas2 жыл бұрын
29:40 why do we use p=2 norm rather than any other p?
@peperomero46035 ай бұрын
xtx is the norm 2 of x, the usual inner product
@srinivasg204 жыл бұрын
Sir you are father of linear algebra. Nice teaching sir.
@hasan07708162684 жыл бұрын
least square problem: to solve a system of equations that has more equations than unknowns, i.e. non square matrix. we solve by At Ax = At b, but since we cant find At for non square matrix, we approximate using svd
@unalcachofa5 жыл бұрын
The first question from the problem set asks for the eigenvalues of A+ when A square. I know that A and A+ have the same number of zero eigenvalues but I'm stuck searching for a relationship for the non zero ones. Some hint?? I check numerically and I verified that they are not 1/λ_i as one might have conjecture.
@dariuszspiewak56243 жыл бұрын
"You can't raise it from the dead"... How true, how true, prof. Strang :))) Even though there are some in this world that think it's actually possible to raise people from the dead, LoL :)))
@井上明彦-d9r10 ай бұрын
If b is perpendicular to the column space of A, what is the solution for Ax=b?
@peperomero46035 ай бұрын
then b is in the null space of the hat matrix H (the orthogonal complement) and so we know that Hb = 0 and so b-hat is 0, so x-hat (Hb = Ax-hat) is 0 if the nxm matrix A has rank=m and if not x-hat is the null space of A. So x-hat would be generated by the columns of the matrix (I - A^+A) where A^+ is any matrix such that AA^+A = A.
@paganisttc3 жыл бұрын
The best of the bests
@Enerdzizer5 жыл бұрын
Prof claimed that A+b give the same result as ATA-1b in 40:39 if matrix ATA is invertable . But if it is not invertable ,what is geometric meaning of A+b? Is it still projection of b onto the column space of A?
@rushikeshshinde23255 жыл бұрын
It's it's not invertible,in general the vector gets mapped to a null space which is smaller than n dimension. This means, it gets mapped to lesser dimensional space hence it's impossible to recover/map it back to column space.
@ТимурЗолкин-я1я4 жыл бұрын
Wel, this matrix here is doing its best to be the inverse. Actually, everybody here is just doing the best to be an inverse. (c) This phrase really describes me fighting my procrastination all the day.
@Leopar5252 ай бұрын
Chalk on a board still makes the hair on my back rise 😅
@alshbsh25 жыл бұрын
how did he get (Ax-b)T(Ax-b)?
@hiltonmarquessantana82025 жыл бұрын
MA MO The dot product in a matrix form
@phsamuelwork4 жыл бұрын
Ax-b is a column vector. So (Ax-b)T is a row vector. Let's write Ax-b = w, wT w give us sum_i wi^2, that is exactly the sum of square of all elements in w.
@Irfankhan-jt9ug4 жыл бұрын
Camera man ....Follow Prof Strang!!!
@Fan-vk8tl4 жыл бұрын
the pseudoinverse part is unclear, the book tells more details and it relationship with the normal solution
@meyerkurt58754 жыл бұрын
Could u tell me how to find the book or the name of book? Thank you!
@Fan-vk8tl4 жыл бұрын
@@meyerkurt5875 His own book: linear algebra and learning from Data.
@drscott12 жыл бұрын
👍🏼
@chrischoir35944 жыл бұрын
This guy could be the worst professor of all time
@paradoxicallyexcellent51383 жыл бұрын
Far from the worst but he ain't great, that's for sure.