A cool integral for Apery's constant (ζ(3)): int 0 to 1 (x(1-x))/sin(πx)

  Рет қаралды 8,454

Maths 505

Maths 505

Күн бұрын

Пікірлер: 40
@The1RandomFool
@The1RandomFool Жыл бұрын
Before watching the video, the substitution I made was pi/2*x = u, then used the double angle formula for sin in the denominator of the integrand. In the numerator, I used the fact that sin^2 u + cos^2 u = 1, then integrated by parts.
@monikaherath7505
@monikaherath7505 Жыл бұрын
Could you write it out please I don't understand how you got to sin^2 u + cos*2 u
@The1RandomFool
@The1RandomFool Жыл бұрын
sin^2 u + cos^2 u = 1 is a basic trigonometric identity. In general, it's a strategy to cancel out a product of sines and cosines in the denominator by setting 1 = sin^2 u + cos^2 u in the numerator.@@monikaherath7505
@CamiKite
@CamiKite Жыл бұрын
Using Euler reflexion formula you can also show that 7ζ(3)/pi^2 = integral(gamma(3/2-x)*gamma(3/2+x)) from -1/2 to 1/2. It doesn't help to integrate, but it's beautiful ;-)
@manstuckinabox3679
@manstuckinabox3679 Жыл бұрын
Bro was like LOL do it by parts and stuff but really didn't bother by going the distance, great video as always brother.
@maths_505
@maths_505 Жыл бұрын
Thanks mate. I've been looking for an integral to use that series on
@carlosgiovanardi8197
@carlosgiovanardi8197 Жыл бұрын
GREAT!! An interesting class of integrals: integrate from 0 to 1 [ x^n (1-x)^m / sin(πx)].
@gjjkhjkk9241
@gjjkhjkk9241 7 ай бұрын
Hi, use the properties of the gamma function like is relation to 1/sin(x.pi) and x(x-1)
@trelosyiaellinika
@trelosyiaellinika 2 ай бұрын
Exhilaratingly beautiful!
@MrWael1970
@MrWael1970 Жыл бұрын
Thank you for this innovative integration. Smart solution.
@KalininEvgen
@KalininEvgen Жыл бұрын
It looks like it can be generalised. If n=3, then ans can be written as (2n+1)zeta(n)/pi^{n}. May be exist some types of integrals which are generalised that way?
@austin4768
@austin4768 10 ай бұрын
Yes I’m also curious if there are analogous formulas for zeta of odd (or even all) n. One can go try to go back through the calculation and find a point where the integrand can be tweaked in such a way to yield this kind of formula. I’m too lazy to do this right now though
@quentinrenon9876
@quentinrenon9876 Жыл бұрын
Nice one ! I now challenge you to solve the integral from 0 to pi of x * (sinx)^n dx. It took me around an hour or 2 to solve and is absoluetly gorgeous
@grigoriefimovitchrasputin5442
@grigoriefimovitchrasputin5442 Жыл бұрын
Thanks ! It looks interesting to solve
@quentinrenon9876
@quentinrenon9876 Жыл бұрын
@@grigoriefimovitchrasputin5442 Tbh it's not too difficult but you need to be creative, normal methods don't work. Or at least I couldn't get very far using them
@grigoriefimovitchrasputin5442
@grigoriefimovitchrasputin5442 Жыл бұрын
@@quentinrenon9876 it looks like Wallis integrals, except that there is a x. Anyway, i'll give it a try
@alarka1782
@alarka1782 Жыл бұрын
I think by applying property of integral, it breaks into pi * integral 0 to pi/2 (sin x) ^ n dx. Should be easy from there to express in terms of gamma function.
@ガアラ-h3h
@ガアラ-h3h Жыл бұрын
Should be doable by integrating by x = sqrt(x) then u = x/2 and then letting u be sin x which leads to a structure very similar to the beta function can’t rlly go further because I have no pen rn
@bigbrewer3375
@bigbrewer3375 5 ай бұрын
damn, maths in 4k is fancy
@julianwang7987
@julianwang7987 Жыл бұрын
Isn't the essence of the proof the following Fourier Expansion for csc(x) = 2 SUM_odd (sin(nx))?
@gregsarnecki7581
@gregsarnecki7581 Жыл бұрын
Awesome integral!
@bartekabuz855
@bartekabuz855 Жыл бұрын
Bring back dark thumbnail 1/4
@maths_505
@maths_505 Жыл бұрын
Okay tomorrow
@PhilesArt
@PhilesArt Жыл бұрын
cr7 fan here too xD, loved that one 👍
@maths_505
@maths_505 Жыл бұрын
SUIIIIIIIIIIIIIIIIIIIII
@damrgee8279
@damrgee8279 Жыл бұрын
How is this applied to every day life?
@insouciantFox
@insouciantFox Жыл бұрын
Integrals are everyday life
@daddy_myers
@daddy_myers Жыл бұрын
Integrals are life.
@damrgee8279
@damrgee8279 Жыл бұрын
@@daddy_myers example please
@daddy_myers
@daddy_myers Жыл бұрын
@@damrgee8279 Your question alone indicates you could use more integrals in your daily life.
@damrgee8279
@damrgee8279 Жыл бұрын
@Jacques-kc4qy it’s amazing that people like yourself are incredibly smart when it comes to this stuff I don’t understand any of it, But yet when it comes to political leanings regarding logic and common sense we have some of the stupidest people on the planet
@natepolidoro4565
@natepolidoro4565 Жыл бұрын
Didn't go the way I thought
@giuseppemalaguti435
@giuseppemalaguti435 Жыл бұрын
Corretto, ❤ho usato sinx, formula esponenziale, poi la serie geometrica... Anche se a me risulta un segno -... Ah ah, al primo colpo non mi viene mai... Ok, il segno - è scomparso... Is correct
@physicsiseasy2623
@physicsiseasy2623 Жыл бұрын
I love your solution though I don't understand one of your solution. I'm an A level student.😊
@maths_505
@maths_505 Жыл бұрын
Oh cool....I used to tutor A level students..... Thanks bro....you'll understand them all pretty soon cuz you'll study the basics in your A levels....then you'll solve these integrals and DEs on your own.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
Beat Ronaldo, Win $1,000,000
22:45
MrBeast
Рет қаралды 158 МЛН
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН
A MONSTER INTEGRAL!!! int 0 to infty arctan(x)/(x(x+1)(x^2+1))
20:02
Apéry's constant (calculated with Twitter) - Numberphile
10:47
Numberphile
Рет қаралды 587 М.
Integration Is Easy, Actually
7:29
exp(ert)
Рет қаралды 13 М.
Ramanujan's easiest hard infinity monster (Mathologer Masterclass)
26:45
Zeta function in terms of Gamma function and Bose integral
11:33
blackpenredpen
Рет қаралды 130 М.
A surprisingly fascinating integral
9:37
Maths 505
Рет қаралды 9 М.
A stellar integral solved using some wonderful complex analysis
20:29
The mystery of 0.577 - Numberphile
10:03
Numberphile
Рет қаралды 2 МЛН
The most interesting differential equation you have seen.
21:16
Michael Penn
Рет қаралды 137 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН