A generalized Fresnel integral: int from zero to infinity of sin(x^n)

  Рет қаралды 15,109

Maths 505

Maths 505

Күн бұрын

Пікірлер
@maths_505
@maths_505 Жыл бұрын
Note: At the 11:27 mark, v=1/2 - 1/2n and the result for u changes accordingly; the reason the mistake didn't affect the final result is the symmetry of the Beta function in its arguments u and v so you get the exact same result as in the video
@rajendramisir3530
@rajendramisir3530 Жыл бұрын
Besides research and rigorous trial & error, I think creativity and logical reasoning play a huge part in arriving at these integral solutions as worked out by Maths 505. He works tirelessly to solve these integrals and differential equations. He educates us by sharing his work. I suggest he compiles all his impressive work into a book for easy reference.
@lexinwonderland5741
@lexinwonderland5741 Жыл бұрын
i agree! I think his problems perfectly walk the line of clever and accessible, and every time his videos end i catch myself just saying "huh. neat!". I'm glad to see him on youtube!
@danielrosado3213
@danielrosado3213 Жыл бұрын
Use ramanujans master theorem!! So much faster and easier though you do have to show the integral converges which is a bit difficult.
@joaomatos6598
@joaomatos6598 Жыл бұрын
You can prove this integral converges by the Dirichlet’s convergence theorem.
@lexinwonderland5741
@lexinwonderland5741 Жыл бұрын
highly recommend @Michael Penn video on this!!
@Calcprof
@Calcprof 6 ай бұрын
The inside exponential/trig integral (about 7:50 or so) is just the Laplace transform of sin(x)
@riadsouissi
@riadsouissi Жыл бұрын
I used to know of only two methods to solve the Fresnel integrals, Laplace integration transform and complex contour integration. I like this one where 1/x^a is replaced by a convenient integral. This reminds me of a similar method to find the sum of 1/(n^2+a^2) which can be replaced by integral of sum of sin(nx)e^(-ax)/n.
@alainleclerc233
@alainleclerc233 Жыл бұрын
From around 8 to 9:00, you could have applied this beautiful Integration method to the two other Fresnel integrals i.e. cos(xˆn) and exp(ixˆn) with suitable minor adjustment. Thanks a lot for such different approach. More please!
@chrisbarrington108
@chrisbarrington108 8 ай бұрын
Thanks Kamal… Loved this one… Your explanations are really clear… I considered the integral of exp(-ix^n), then used a slightly different subst u^(1/n)=i^(1/n)*x, which gives dx=(1/n)(i)^(-1/n)(u)^((1/n)-1)du… The integral immediately becomes (i)^(-1/n)*(1/n)*gamma(1/n) without any further substitutions or integration. The term (i)^(-1/n) is cos(pi/2n)-i*sin(pi/2n) and consequently you get the result for both the integral of sin(x^n) and cos(x^n) in a slightly more streamlined form: Integral of sin(x^n) dx = (1/n)*gamma(1/n)*sin(pi/2n). And Integral of cos(x^n)dx = (1/n)*gamma(1/n)*cos(pi/2n) The solution for sin is the same as yours, just apply the reflection formula for the gamma function and the double angle formula for sin to your solution… What I love about your videos is that they inspire us to look at these problems in different ways… Thank You!!!
@illumexhisoka6181
@illumexhisoka6181 Жыл бұрын
The moment you used that substation I knew that you are going to you the integral representation of x to some power
@manstuckinabox3679
@manstuckinabox3679 Жыл бұрын
The Golden question is, where in the world did you learn all these integration techniques? do you recommend any books or is it just creative thinking at it's finest. P.S: You do an awesome job at explaining the intuition behind them, but I'm becoming increasingly jelous of your magic tricks magician....
@maths_505
@maths_505 Жыл бұрын
I got the parametrization of 1/x^n from an exercise in advanced calculus by Woods As far as everything else is concerned it's mostly hit and trial through self learning and lots of searching on the internet....alot of stuff is available on the stack so do check it out from time to time....and you can find lots of pdfs on the internet with examples on applying Feynman's technique, contour integration, the beta and gamma function, the digamma functions, polylogarithms etc
@manstuckinabox3679
@manstuckinabox3679 Жыл бұрын
@@maths_505 Ahhh sweet, the ol' exchange. Oh, and I'll definitely check out Woods' book.
@elibrahimi1169
@elibrahimi1169 Жыл бұрын
7:31 i thought you'd recognize this as the laplace transform of sinx , except the s is replaced with t, and the t is replaced with x however , the way you handled it was intresting aswell
@lexinwonderland5741
@lexinwonderland5741 Жыл бұрын
my guy i love your content (ive been on a commenting spree on your videos lately lol) but the handwriting is KILLING me, especially how handwritten n looks like u and such, i get writing on a phone/tablet is hard but i would definitely appreciate if the handwriting was a little more careful. i want to appreciate your kickass content more easily!! i'm thrilled seeing your videos, you have a very casual and friendly yet nerdy demeanor and you address all sorts of decently advanced topics in a very accessible way. i watch you and Michael Penn's videos the way my parents did the crossword in the morning paper, it's just the right level of challenge for casual entertainment. all in all great vid and keep it up!!
@usernameisamyth
@usernameisamyth Жыл бұрын
thanks man... keep making these
@TheHellBoy05
@TheHellBoy05 Жыл бұрын
I obtained 1/n{Gamma(1/n)}sin(π/2n). And I'm very curious to see why my result is wrong, because at n=1, the answer is invalid
@cameronspalding9792
@cameronspalding9792 Жыл бұрын
Whenever I do problems like this I always like using contour integration
@lucadituri
@lucadituri Жыл бұрын
At 11:27 isn't v supposed to be equal to 1/2 - 1/2n ?
@maths_505
@maths_505 Жыл бұрын
Yup I just pinned a comment
@aranaedgar3
@aranaedgar3 Жыл бұрын
Excelente video, excelente explicación, lo felicito por el nivel matemático y la forma de tratar cada caso ❤❤❤
@realdebil.
@realdebil. Жыл бұрын
this gameplay fire
@MrWael1970
@MrWael1970 Жыл бұрын
v = 1/2(1-1/n) there is a mistake in this step. Thank you very much for this video.
@pestopoppa
@pestopoppa Жыл бұрын
After the initial variable transofrm, why not expand SIN(x) via taylor and write is as a residue integral in Mellin form? The original integral then becomes the Mellin transform of an inverse mellin transform and everything pops out as desired.
@jonathan3372
@jonathan3372 Жыл бұрын
I noticed that the integral is the Mellin transform of sinx evaluated at a=1/n. Could you elaborate on your method, sounds interesting?
@harovar7
@harovar7 9 күн бұрын
{integral( sin(xⁿ) ), x=0 to inf }= (1/n)! sin(pi /(2n)) n>1
@hoangquang7153
@hoangquang7153 Ай бұрын
If int from 0->pi/2 ??
@cameronspalding9792
@cameronspalding9792 Жыл бұрын
I did my own method using the contour integration and I got a term involving sin(pi/2n)
@TheHellBoy05
@TheHellBoy05 Жыл бұрын
Did you obtain 1/n{gamma(1/n)}sin(π/2n)? Because I obtained the same result. However at n=1, the result is invalid. But I'm curious to see where the error arose from.
@holyshit922
@holyshit922 Жыл бұрын
It looks like Gamma function
@giuseppemalaguti435
@giuseppemalaguti435 Жыл бұрын
A me risulta 1/nG(1/n)sinpi/2n.. G funzione gamma
@Decrupt
@Decrupt Жыл бұрын
oh damn, more content today. nice
@povijarrro
@povijarrro 3 ай бұрын
Hello nice video. But you should not use n and u in same problem solving.
@renesperb
@renesperb Жыл бұрын
Mathematica gives the result I[n]= Gamma[1+1/n]*sin[π/2n] . Can you check if this is your result ?
@maths_505
@maths_505 Жыл бұрын
Myers correctly pointed out that the results are equivalent. This definitely a nicer result though
@renesperb
@renesperb Жыл бұрын
I just checked that it is the same .
@paulboutemy8991
@paulboutemy8991 Жыл бұрын
@@maths_505 Wonderful, keep it up but how can we prove this equivalence ?
@davidblauyoutube
@davidblauyoutube Жыл бұрын
Incredible result!
@maths_505
@maths_505 Жыл бұрын
Indeed
@digxx
@digxx Жыл бұрын
Well.... While interchanging the x- and t-integral may work, the Fubini condition for the absolute value integral is not fulfilled...
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН
Try this prank with your friends 😂 @karina-kola
00:18
Andrey Grechka
Рет қаралды 9 МЛН
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 120 МЛН
A ridiculously awesome integral with an epic result
13:43
Maths 505
Рет қаралды 11 М.
Ramanujan wins again!!
9:13
Dr Peyam
Рет қаралды 8 М.
A breathtaking integration result!
15:56
Maths 505
Рет қаралды 12 М.
Researchers thought this was a bug (Borwein integrals)
17:26
3Blue1Brown
Рет қаралды 3,9 МЛН
An amazing integration result: Lobachevsky's formula
12:10
Maths 505
Рет қаралды 16 М.
I Found Out What Infinity Factorial Is
4:25
BriTheMathGuy
Рет қаралды 156 М.
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 206 М.
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН