A ridiculously awesome integral with an epic result

  Рет қаралды 11,971

Maths 505

Maths 505

Күн бұрын

Пікірлер: 38
@rajendramisir3530
@rajendramisir3530 Жыл бұрын
A reliable heterogeneous mixture that leads to a succulent solution of this esoteric integral. Clever choice of tools, techniques and clear explanation. Thanks for sharing. Recognizing and applying identities is a very helpful technique to solve problems in Mathematics.
@maths_505
@maths_505 Жыл бұрын
Spoken like a poet
@TheArtOfBeingANerd
@TheArtOfBeingANerd Жыл бұрын
I love how the radical radical 5 at around 9:45 looks like it's just morphing
@omar990anbar
@omar990anbar Жыл бұрын
It was a good plot twist at the very end. Golden Ratio: have you forgotten me boys?
@violintegral
@violintegral Жыл бұрын
AMAZING integral. We get the trifecta of famous mathematical constants: e, pi and phi all in relation with one another through this integral. I found another great solution using the series expansion of cosine, the Gamma and Beta function, and the geometric series but I don't want to step on your toes by sharing too many of my own solutions. It's your channel, after all.
@maths_505
@maths_505 Жыл бұрын
I found that solution too but this technique is way more awesome. After all, the only way to make integrals even more entertaining is to throw complex numbers, integral transforms and special functions into the mix😂
@rajendramisir3530
@rajendramisir3530 Жыл бұрын
13:32 A reliable heterogeneous mixture that leads to a succulent solution of this esoteric integral. Clever choice of tools, techniques and explanation. Thanks for sharing. Recognizing and applying identities is a very useful technique to help construct solutions to problems in Mathematics.
@tueur2squall973
@tueur2squall973 Жыл бұрын
May I ask you how did you achieve the same results by using at first the geometric series of cosine ? I'm trying my best but I'm stuck. Here's my work for the moment : Step 1: transform the integral from -infty to+infty into 2*integral from 0 to +infinity because our integrand is even. Step 2: Write cos(2x²) as its geometric series Step 3: slip the exponential term inside the sum and switch up the sum and the integral Step 4 : small change of variable to get the gamma function. We let t=x² Step 5 : We have finally the sum over k of [(-4)^k]Gamma(2k+1/2)/(2k)! Then what do we do next ?
@violintegral
@violintegral Жыл бұрын
@@tueur2squall973 multiply by Gamma(1/2)/Gamma(1/2). Then the summand is 1/sqrt(pi)*(-4)^n*Gamma((4n+1)/2)*Gamma(1/2)/Gamma(2n+1). The Gamma function expression is of the form Gamma(x)*Gamma(y)/Gamma(x+y) = B(x, y), so you can use an integral representation of the Beta function to transform the sum into an integral. By the way, the resulting geometric series has common ratio (-4x^2), and since the integral bounds are from 0 to 1, it does not converge in the usual sense. Now I don't know anything about complex analysis, but I believe it's valid to analytically continue the geometric series here so that we can write the sum as 1/(4x^2 + 1). And, indeed, this approach seems to be valid since the resulting integral gives the same value found in this video. However, evaluating the resulting integral is not an easy task either, so good luck!
@fartoxedm5638
@fartoxedm5638 Жыл бұрын
I just discovered your channel yesterday, but I'm already in love! You remind me of my teacher, who always left out some details, but he always mentioned them to make sure that we also understand all the basic things.
@michaelbaum6796
@michaelbaum6796 Жыл бұрын
You are really the best teacher I have ever had. Your videos are so clear. I live them.
@renesperb
@renesperb Жыл бұрын
It seems worthwhile to show that for arbtrary complex a with positive realpart one has ∫ exp[-a*x^2] dx from 0 to inf = 1/2*√(π/a).This includes a number of special cases , like the one discussed in this video.
@tsa_gamer007
@tsa_gamer007 Жыл бұрын
does anyone knows that that in I(a)= the integral from 0 to infinity of e^(-a(x^2)) dx put ax^2=t => I(a)=1/(2sqrt of a) * gamma function of (1/2) so for a=1-2i we get our integral= Re(sqrt[pi/1-2i]) making the denominator real we get sqrt(pi/5) Re(sqrt(1+2i)) =sqrt(pi/5) sqrt golden ratio
@maalikserebryakov
@maalikserebryakov Жыл бұрын
Its always a spiritual experience seeing your solutions. I feel my soul being thrown out of my body and through the cosmos. I see everything for a few seconds.
@maths_505
@maths_505 Жыл бұрын
Bro🥺
@qetzing
@qetzing Жыл бұрын
I am simply amazed. I don't have the words to express how elegant the solution and even more so your presentation is. Truly perfect
@maths_505
@maths_505 Жыл бұрын
Thanks mate
@michaelbaum6796
@michaelbaum6796 Жыл бұрын
Fascinating solution👍It‘s so much fun watching your perfect videos. Go ahead!😀
@maths_505
@maths_505 Жыл бұрын
Thanks bro
@AhmadAli-fx1hk
@AhmadAli-fx1hk Жыл бұрын
The end result was pretty amazing
@manstuckinabox3679
@manstuckinabox3679 Жыл бұрын
Involving my favorite Identity?? SWEET!
@erggish
@erggish Жыл бұрын
I have no idea how you got the results from the Laplace (and inverse) operators... But the end result of pi, phi and five was great indeed :D
@newwaveinfantry8362
@newwaveinfantry8362 Жыл бұрын
Love it! ♥
@chenwong1036
@chenwong1036 Жыл бұрын
Where do these integral come from and how are these used in real life applications?
@fonaimartin98
@fonaimartin98 Жыл бұрын
Subbing u = x sqrt(1 - 2j) into the integral (of which's real part we are interested in) also works, doesn't it? (Assuming we take the value of the Gaussian integral as known)
@maths_505
@maths_505 Жыл бұрын
I wanted the proof of the gaussian integral for a complex argument to be part of the video as kind of an added bonus as I found the evaluation quite beautiful
@manstuckinabox3679
@manstuckinabox3679 Жыл бұрын
Reviewing this, 2:36, just as I was about to ask LOL.
@carlosdavid7430
@carlosdavid7430 Жыл бұрын
I got an 8 on my spanish exam,can you give me some integrals i can solve to cheer me up?
@maths_505
@maths_505 Жыл бұрын
Let me think of some to post as HW Sorry about the Spanish exam mate....you'll get em next time
@rajibdebnath9896
@rajibdebnath9896 Жыл бұрын
Hello sir, can you suggest me good mathematical physics book.
@maths_505
@maths_505 Жыл бұрын
Oh there are lots of great books... For introductory concepts I recommended Stone and Golbert or Sadri Hassani's mathematical physics. For specific topics you can check out Sean Carroll's lecture notes in general relativity and there are plenty of resources for mathematics required for quantum mechanics: my favourite QM book by Lifshitz and Landau is full of wonderful mathematical explanations
@rajibdebnath9896
@rajibdebnath9896 Жыл бұрын
@@maths_505 thank you sir.
@holyshit922
@holyshit922 Жыл бұрын
Laplace transform yes it is good idea but Euler's formula can be avoided , nevertheless nice solution
@giuseppemalaguti435
@giuseppemalaguti435 Жыл бұрын
Quando sei arrivato a 2 30 basta utilizzare l'integrale della gaussiana...ma immagino te ne sarai accorto
@maths_505
@maths_505 Жыл бұрын
Sì, certo, ma volevo includere la valutazione della gaussiana per un argomento complesso come parte dello sviluppo della soluzione per l'integrale perché era estremamente interessante
An awesome generalized integral!
8:23
Maths 505
Рет қаралды 9 М.
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН
СИНИЙ ИНЕЙ УЖЕ ВЫШЕЛ!❄️
01:01
DO$HIK
Рет қаралды 3,3 МЛН
The strange cousin of the complex numbers -- the dual numbers.
19:14
Another ridiculously awesome integral with a beautiful result
14:11
Complex Analysis-ing a CRAZY Integral
24:10
Ginger Math
Рет қаралды 447
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 764 М.
This epic integral is the best thing you'll see today!
25:35
Maths 505
Рет қаралды 12 М.
A RIDICULOUSLY AWESOME INTEGRAL: Ramanujan vs Maths 505
18:23
Maths 505
Рет қаралды 40 М.
This open problem taught me what topology is
27:26
3Blue1Brown
Рет қаралды 965 М.
How Math Becomes Difficult
39:19
MAKiT
Рет қаралды 605 М.
A stellar integral solved using some wonderful complex analysis
20:29