8:42 In general, would we not have y^2 = y+1+2πni? I believe all solutions are of the form e^((1+r)/2) where r is a square root of 5+8πni. If n=1, one solution is approximately -0.4+11.7i but that doesn’t seem to match the picture at the end.🤔
@marzipanhoplite175 күн бұрын
Congratulations,both methods are equally fine.By the wayyou are doing very well by symbolizing natural logarithm with ln and not log
@scottleung95875 күн бұрын
I used the first method.
@barakathaider63335 күн бұрын
👍
@Nothingx3035 күн бұрын
6:00 it's a golden ratio isn't??
@Cray_Science5 күн бұрын
It is
@giuseppemalaguti4355 күн бұрын
lnx=(1+√5)/2….lnx=(1-√5)/2
@Tommy-tx4dx4 күн бұрын
I cannot seem to find my error in this approach: x^lnx = e × x ln(ln(x)²) = ln(e×x) ln(ln(x)²) = ln(e) + ln(x) ln(ln(x)²) = 1 + ln(x) e^ln(x)² = e^1+ln(x) e^ln(x)² = e × e^ln(x) e^ln(x) = e x = e