A limit of a cosine sum using Euler's formula for sin x/x.

  Рет қаралды 14,690

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 43
@maxsch.6555
@maxsch.6555 4 жыл бұрын
Because the 2^n is a strictly monotone and divergent sequence, one may also use Stolz-Cesàro theorem to get the answer.
@ayushmanpaul3931
@ayushmanpaul3931 4 жыл бұрын
Can you please show how to evaluate using the stolz-cesàro theorem
@caluire24
@caluire24 11 ай бұрын
at... 9:30... should be cos(1/2^2^n) ?? sum till 2^n of 1/2^k ??? does not change the result actually😂
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
13:25
@birdbeakbeardneck3617
@birdbeakbeardneck3617 4 жыл бұрын
u popular now
@robertgerbicz
@robertgerbicz 4 жыл бұрын
The whole video is a big overshoot in many ways. If a(k) converges to c (finite number), then sum(k=1,n,a(k))/n converges to c (in your problem you can take a(k)=cos(1/2^k); c=1 and n=2^m (subsequence)). It is pretty trivial.
@tomatrix7525
@tomatrix7525 4 жыл бұрын
Prime example of the squeeze thm. Lovely stuff
@Jaeghead
@Jaeghead 4 жыл бұрын
An easier way would be to use the fact that (cos(1/k)) converges to 1, which implies that the average (1/k Σ cos(1/m)) (sum from m = 1 to k) also converges to 1.
@thefranklin6463
@thefranklin6463 4 жыл бұрын
Jaeghead does it matter that it’s sum(cos(1/2^k)) not sum(cos(1/m))?
@Jaeghead
@Jaeghead 4 жыл бұрын
@@thefranklin6463 I was just mentioning the simplified idea, in this case you use the fact that (cos(1/2^k)) converges to 1 and therefore the average of 2^n summands converges to 1.
@thefranklin6463
@thefranklin6463 4 жыл бұрын
Jaeghead i think that’s a great simplification! I wasn’t aware of that identity before, so thanks for exposing me to it. I was curious how to show that the problem in the video could be reduced into the arithmetic mean problem.
@xulq
@xulq 4 жыл бұрын
Shouldnt it be cos(1/2^(2^n)) on the right side instead of cos(1/2^n) at 9:10 ?
@pcbenutzer6651
@pcbenutzer6651 4 жыл бұрын
Can you pleas make a video about AGM and relation to elltiptic integrals?
@abdelbarichedad1741
@abdelbarichedad1741 3 жыл бұрын
THANK U Micheal
@get2113
@get2113 4 жыл бұрын
I think it follows easily as a Cesaro sum.
@radhab8761
@radhab8761 4 жыл бұрын
Sir please make a video on the proof of l'hospital rule
@yusufa.ratleh467
@yusufa.ratleh467 4 жыл бұрын
Can you make a video about gamma function
@avrahambabkoff3776
@avrahambabkoff3776 4 жыл бұрын
To say lim as x->0 of sin(x)/x is 1 by l’hopitals rule is circular logic
@GhostyOcean
@GhostyOcean 4 жыл бұрын
Isn't the final value cos(1/2^(2^n)), not cos(1/2^n)?
@krisbrandenberger544
@krisbrandenberger544 7 ай бұрын
@ 1:41 The denominator of the argument of cosine should be 2^k, not 2^n.
@maxjackson6616
@maxjackson6616 4 жыл бұрын
at 9:03 could you use 1 instead of cos(1/2^n) to bound the sum from above? so you'd get 1/2^n sum from 1 to 2^n of 1 which is just 1?
@AnishSarkarISIDelhi
@AnishSarkarISIDelhi Жыл бұрын
Can't you use the fact that if the n-th term converges to a, then the ratio of partial sum and n would also converge to a?
@tahtouhladeb7671
@tahtouhladeb7671 4 жыл бұрын
There's a much easier answer : using cesaro theorem
@f5673-t1h
@f5673-t1h 4 жыл бұрын
What's that?
@ancientwisdom7993
@ancientwisdom7993 4 жыл бұрын
@@f5673-t1h He's covered this here: kzbin.info/www/bejne/epSWfYt8nr2Wo7s
@ayushmanpaul3931
@ayushmanpaul3931 4 жыл бұрын
How to solve it using cesaro theroem
@tahtouhladeb7671
@tahtouhladeb7671 4 жыл бұрын
@@ayushmanpaul3931 cos(1/2^n) converges to 1 as n goes to infinity so 1/n * (sum k from 1 to n of cos(1/2^k) ) converges to 1
@f5673-t1h
@f5673-t1h 4 жыл бұрын
Using proof by inspection, the answer is 1.
@dugong369
@dugong369 4 жыл бұрын
You're taking the mean of a lot (infinite number, in limit) of numbers. 100% of those numbers are infinitely close to 1 (within epsilon of 1 for any epsilon). So the mean can't be less than 1, and it can't be more (since all the numbers are less than 1). I'm guessing the theorem referred to in other comments states this more rigorously. I believe this argument can show that limit as n->infinity of 1/n * sum of cos(1/k) for k=1 to n is also 1, even though for finite n this expression is much smaller than the 2^n version.
@kingkartabyo6206
@kingkartabyo6206 4 жыл бұрын
That is exactly the outline of proof of Cesaro's theorem, often showed in Real Analysis I class.
@bmenrigh
@bmenrigh 4 жыл бұрын
I didn’t understand why the lower bound in the second use of the squeeze theorem was justified. The replacing 2^n with inf part. I thought we were looking at 2^n as n -> inf so that’s inf too. I must have missed something subtle or misunderstood completely?
@xCorvus7x
@xCorvus7x 4 жыл бұрын
In the second use the function in the middle is essentially a double limit, where once the root goes to infinity and then the product inside the root, too. Since the limit of that product is strictly less than any finite iteration of the product, we can get a lower bound to apply the squeeze theorem by replacing the interior of the root with the result of that limit.
@Teclis1917
@Teclis1917 4 жыл бұрын
Hello, mister Penn. Can you please make video about series with f_n(x)=sin(n!*pi*x)?
@sujalsagtani6868
@sujalsagtani6868 4 жыл бұрын
All values of x any n for which 2n²+1 is a perfect square
@sujalsagtani6868
@sujalsagtani6868 4 жыл бұрын
Please make a video on it this is useful in the concept of balancers on which you made a video For example 1+2+3+4+5=7+8
@blazedinfernape886
@blazedinfernape886 4 жыл бұрын
@Adam Romanov He is probably demanding a video from michael penn
@cameronspalding9792
@cameronspalding9792 Жыл бұрын
I would have used the formula cos(x)=1+O(x^2) for all real x
@anupamahalder279
@anupamahalder279 4 жыл бұрын
So nice ❤
@estebansanches4236
@estebansanches4236 4 жыл бұрын
1
@giuseppepapari8870
@giuseppepapari8870 4 жыл бұрын
How about the limit of my patience with getting one ad every 30sec?
@douglasmagowan2709
@douglasmagowan2709 4 жыл бұрын
This is overkill. At the limit, there are are infinitely many terms in the series which are arbitrarily close to 1 and finitely many that are not. We can construct a rather simple delta-epsilon argument to show that the limit approaches 1.
@emanuelorzusa
@emanuelorzusa 4 жыл бұрын
First
Finding a limit using an integral!
6:44
Michael Penn
Рет қаралды 10 М.
an infinite tangent product.
23:20
Michael Penn
Рет қаралды 18 М.
这是自救的好办法 #路飞#海贼王
00:43
路飞与唐舞桐
Рет қаралды 136 МЛН
Family Love #funny #sigma
00:16
CRAZY GREAPA
Рет қаралды 57 МЛН
Twin Telepathy Challenge!
00:23
Stokes Twins
Рет қаралды 57 МЛН
sum versus product battle!!
17:34
Michael Penn
Рет қаралды 14 М.
Math for fun, sin(z)=2
19:32
blackpenredpen
Рет қаралды 1,8 МЛН
OVERKILL | an obvious inequality
23:43
Michael Penn
Рет қаралды 20 М.
Euler's formula with introductory group theory
24:28
3Blue1Brown
Рет қаралды 2,4 МЛН
So many factorials!!!
28:47
Michael Penn
Рет қаралды 47 М.
How on Earth does ^.?$|^(..+?)\1+$ produce primes?
18:37
Stand-up Maths
Рет қаралды 397 М.
if x+y=8, find the max of x^y (Lambert W function)
12:59
blackpenredpen
Рет қаралды 750 М.
Two nice double sums!
14:06
Michael Penn
Рет қаралды 22 М.
The unexpected probability result confusing everyone
17:24
Stand-up Maths
Рет қаралды 775 М.
这是自救的好办法 #路飞#海贼王
00:43
路飞与唐舞桐
Рет қаралды 136 МЛН