you don't have to do the numerical calculation to check. They are all approximations and inaccurate. log(((1+sqrt(5))/2) / log (3/2) is a good enough final answer.
@margarita8442 Жыл бұрын
I need to make a log
@serkan5951 Жыл бұрын
@@margarita8442 what is log i heard that a lot in some kind of movies. "Log logg log log mmh "
@zhartaunik Жыл бұрын
The same thoughts. If you decided to calculate you could do it immediately at 7:53 But as said the thread starter better to leave the answer from 7:53
@alec734 Жыл бұрын
@@serkan5951 what is log? Baby don't hurt me, don't hurt me, no more
@benjaminmatte5225 Жыл бұрын
2
@pangeo81832 жыл бұрын
The value (1+sqrt(5)) /2 is called the golden ratio and is a really important quantity in maths. So we can write the solution as log_3/2(phi) where phi is the golden ratio.
@thundercraft0496 Жыл бұрын
Same thoughts
@hb1338 Жыл бұрын
The golden ratio is also very important in other fields, such as architecture and music.
@avendreams2057 Жыл бұрын
φ is the letter you are looking for
@harrisonrower2293 Жыл бұрын
I couldn’t believe seeing phi inside the solution when I did this one. Took me a bit to get through the algebra. Glad other people noticed too
@syzrael1 Жыл бұрын
Please explain more
@lanceschaina3084 Жыл бұрын
I rewrote as 9^x - 6^x - 4^x = 0, redefined A = 3^x, B = 2^x, formed the quadratic A^2 - AB - B^2 = 0, used quadratic formula, got A = [(1+sqrt(5))/2]*B, substitute for A and B, 3^x = [(1+sqrt(5))/2]*2^x, divided both sides by 2^x, got (3/2)^x = [(1+sqrt(5))/2], took ln both sides, solved for x. Took me about 90 seconds. I'm sorry, but, wow, what an ugly problem. Math Olympiad was really scraping the bottom of the barrel for this one.
@arifayeasmin600 Жыл бұрын
math olympiad has catagories remember?
@Vermiliontea Жыл бұрын
That is a very elegant solution 👍 . However, it requires you to "see" things (even if it wasn't terribly obscure). Learncommunolizer's solution is a methodical isolation of X, which is why I appreciate it more.
@ashamenai1659 Жыл бұрын
Yes I did similar but I completed the square instead of using quadratic formula.
@infinitexgg Жыл бұрын
Wrong, you cant do a second grade equation if a is not by multiplied by X²
@misterroboto1 Жыл бұрын
@@ashamenai1659 The quadratic formula is an application of completing the square ;)
@감각적으로직관이-j4w Жыл бұрын
my solution is this. Let 3^x is A, 2^x is B A^2-AB-B^2=0 A=(1+sqrt5)B/2 because A/B is (3/2)^x, x is log(1+sqrt5/2)/log3/2
@60fps-games Жыл бұрын
To solve the equation 9^x - 6^x = 4^x, we can rearrange it as follows: 9^x = 6^x + 4^x Then, we can use logarithms to solve the equation: log9(9^x) = log9(6^x + 4^x) x = log9(6^x + 4^x) To solve this equation, we can use a simple iterative method. Start by choosing an arbitrary value x0 and apply the following formula until the desired accuracy is achieved: xn+1 = log9(6^xn + 4^xn) After a few iterations, the value of xn will converge to the solution of the equation.
@MegoElazab8 ай бұрын
You approximate 3times You have to approximate o će finaly
@士雪 Жыл бұрын
A very nice piece of demonstration of how to solve for x. However, it is unwise to make approximation at the end part of the demonstration. Leave x as an irrational number is good enough.
@marcosreal11 Жыл бұрын
It helps to discuss the strategy first. How do we know to divide by 4^x? It is from the underlying strategy, try to write all exponential terms with a common base. The wise student will make a reference sheet of the different strategies that can be used for different problems, since often the most difficult part is knowing how to start the problem.
@davidzhang2319 Жыл бұрын
What would happen if you couldnt? What would you do if on the right hand side it had 5^x? You wouldn't be able to find a common base because 9 and 6 dont divide into 5.
@ostasvl4203 Жыл бұрын
Try to divide by 6^x, or by 9^x. They're all the same
@kimutaiboit851611 ай бұрын
@davidzhang2319 you will require calculus to do that. As for this problem you can divide by any. I divided by 6
@snowlynx5221 Жыл бұрын
Listening this solution, I forgot the math I knew, but I learned Indian pronunciation. Thank you so much!!!
@rubensramos64582 жыл бұрын
If a problem can be solved by using the Lambert W function, then it is certainty an exponential problem. On the other hand, if the problem can be solved by using the Lamabert-Tsallis Wq function (as it happens for a^x-b^x=c^x) then it is a polynomial problem.
@Ez55upgogo Жыл бұрын
12:59
@FractAlkemist Жыл бұрын
I wrote a simple Genetic Algorithm in Python for equations like this, which I frequently play around with. The GA does not rigorously solve the equation algebraically, but it solves it numerically and gives an answer as close to exact as you want - good enough for engineers, if not theoreticians. My program ran for about 3 seconds and gave a value for x: x = 1.1868143902809818 . With that value, the left side of the equation evaluates to 5.182430200563065 , and the right to 5.182430200563064. The difference is then 8.881784197001252e-16 , essentially zero; equation solved. .
@thetimeiable Жыл бұрын
Using code is too overpowered
@FractAlkemist Жыл бұрын
@@thetimeiable coding rocks!
@FarQuZeDesigns Жыл бұрын
Man my math skills are really rusty, but it was super awesome to watch this you literally move through it step by step, i like that :) Wish you all the best!
@learncommunolizer Жыл бұрын
Glad you enjoyed it!
@PeterSedesse Жыл бұрын
I was doing fine until the log showed up
@dDAMKErkk Жыл бұрын
@mksarav75 Жыл бұрын
great and simple teaching. thanks.
@learncommunolizer Жыл бұрын
You are welcome! 🙏❤️🙏
@sncarlos1970 Жыл бұрын
By using Euler equation Exp(i*pi)=-1 or e^(i*3.1416)=-1 you can get a complex result for any negative argument of logarithmic. So ln[1-sqr(5)}= ln [-1*(sqr(5)-1)]=ln(-1)+ln[sqr(5)-1) =ln [Exp(i*pi)]+ln [sqr(5)-1] = (0.211935,3.1416)
@iwillkechu Жыл бұрын
Way easier answer……… A= 2021, B= 0, C= 2020. Plug that in for both equations and it works for both.
@nagyzoli2 жыл бұрын
Log turned into decimal is approximation, you loose accuracy(very simple.. can you get that value without calculator or engineering tables? Probably not. Hence.. approximation). The correct mathematical solution (at least the one that would have been excepted in my country) is the log form. log(3/2) ( (1+sqrt(5))/2)
@kenanerol6037 Жыл бұрын
Exactly
@TheMathArt Жыл бұрын
watch this nice math problem : kzbin.info/www/bejne/aaLFpYdrZaaaZs0
@42_universe Жыл бұрын
indeed!
@nikola21262 жыл бұрын
Very nice congratulations👏👏👏
@learncommunolizer2 жыл бұрын
🤝👍👍
@EmmanuelBrandt Жыл бұрын
very interesting approach, many thank for this problem
@learncommunolizer Жыл бұрын
Thanks and Welcome 🙏❤️🙏
@michaeldolaberidze670 Жыл бұрын
Thanks 😊... This is Abracadabra 😊🌟💌👈9™-6™=3™...TM=1... This is True.
@michaeldolaberidze670 Жыл бұрын
Thanks 😊...
@learncommunolizer Жыл бұрын
You're welcome 😊
@jodhvirsingh8677 Жыл бұрын
Exponentials...quadratics...logs....Such a simple looking question and yet amazing
@math_qz_211 ай бұрын
Very instructive task
@johnfernau6299 Жыл бұрын
Great explanation! Towards the end of your video, I think I heard a cat purring. 🤣
@learncommunolizer Жыл бұрын
😁 You are right !
@mohamedhasan7309 Жыл бұрын
Excellent question, and good explanation, thanks.
@learncommunolizer Жыл бұрын
You are welcome!🙏❤️
@SaiSuhasiniRamalingam-n5s Жыл бұрын
Really nice 👌
@JoySaha-jf7oq Жыл бұрын
Thank make more videos. Good luck 👍❤❤
@learncommunolizer Жыл бұрын
Thank you, I will try my best 👍❤️❤️❤️ @Joysaha
@haiyangwan2363 Жыл бұрын
The BBC BASIC computing coding below can also obtain a answer by way of an iterative process. The coding requires you to state how precise an answer you want. At the level of precision in the coding below (determined by the line "UNTIL D
@ideegeniali Жыл бұрын
I didn't expect to see BASIC in 2023! I was born in 1978 learned basic on commodore 64, then went to Pascal, then to C, then Java, then Python. Long live Basic!
@haiyangwan2363 Жыл бұрын
@@ideegeniali Thanks for your comment. I first learnt computing in the early 1980s using BASIC, then did a bit of Pascal & Fortran, machine code at University, then did no computing for 30 years. I bought BBC BASIC for Windows in 2017 and it seems to do all I want it to do. Subsequently i tried to get into Python but it was not immediatly obvious how Python was better than BASIS for my purposes. I suspect Python probably is a better but having just re-learnt BASIC I could not get into it.
@davidfriedlander5512 Жыл бұрын
Very impressive. Nice work.
@learncommunolizer Жыл бұрын
Thank you! Cheers!
@swindler1959 Жыл бұрын
my man just solved creation of universe
@rogerfisken4189 Жыл бұрын
I don't understand the need to take logs to base 3/2 (at 6.25). Log calculations taken to base 10 or ln will work just as well and save a lot of time. You can just say xlog (3/2) = log ((1 + rt 5)/2) and go from there. The fewer steps taken, the lower the risk of errors.
@ragingxavier2691 Жыл бұрын
Bruh, I'll be extremely honest with you. I was forced to take additional math as part of my curriculum in college, majoring in sports coaching. Why? I have 0 clue. This video brought about nostalgia but a rather hated topic in math that I had to learn. I only scored some points for the question cuz I couldn't solve the rest of it. Miraculously, I somehow scored a B for Additional Math XD. I really respect the fact you and everyone who understands and are able to apply and explain this. Hats off to you and everyone else, mate.
@learncommunolizer Жыл бұрын
Thanks 🙏❤️
@viswathkkumar8334 Жыл бұрын
Bringing back my school memories, we use to do these in 6 to 8 th grades
@justarandomguy77 Жыл бұрын
Fekuu 😆😆
@greninja7619 Жыл бұрын
Kya fek raha hain bhai,jee mains se tougher sawaal hai yeh sab
@justarandomguy77 Жыл бұрын
@@greninja7619 nhi hai shayd tumne jee mains ke questions nhi dekhe
@greninja7619 Жыл бұрын
@@justarandomguy77 lol jee mains me itne aasan sawaal aane lage hai bhai especially coordinate geometry ke, yehnbhi aasan tha lekin jee mains tough nahi hai, jee advanced tough hai
@justarandomguy77 Жыл бұрын
@@greninja7619 9^x - 6^x = 4^x yeh question or If log2 (9 2𝛼−4 + 13) −log2 (3 2𝛼−4 . 5 2 + 1) = 2, then maximum integral value of 𝛽 for which equation, 𝑥 2 − ((∑ 𝛼) 2𝑥)+ ∑(𝛼 +1) 2𝛽 = 0 has real roots is ______. yeh question mai tujhe fark nhi dikh rha? Kaha jee mains ka question kaha yeh 😶
@cielblue235 Жыл бұрын
a^2 - ab - b^2 = 0 where a = 3^x, b = 2^x with a, b > 0. Thus, u^2 - u - 1 = 0, u = (a/b) ^x > 0, u = (1+\/ 5)/2, yielding x = Log_ (p) (1+\/ 5)/2 with p = 3/2.
@mikesteele5935 Жыл бұрын
This is a nice problem that illustrates a very general principle: "exponential problems" are usually solved by substitutions that transform them into non-exponential problems. The usual candidate is a substituion that gives us a quadratic equation. There are usually two or three feasible transformations, so not much creative work is required. One then gets some good practice with the more routine bits of school algebra. Several examples on this channel illustrate this principle.
@TheMathArt Жыл бұрын
watch this nice logarithmic problem : kzbin.info/www/bejne/aaLFpYdrZaaaZs0
@magicman-sv3jm Жыл бұрын
9x - 6x = 3x So now our equation becomes: 3x = 4x To solve for x, we can subtract 3x from both sides of the equation: 3x - 3x = 4x - 3x Simplifying the right-hand side: x = 0 Therefore, x = 0.
@arnavkmr3895 Жыл бұрын
This magic man really did do something magical here! So many mathematical atrocities! Elegant!
@magicman-sv3jm Жыл бұрын
@@arnavkmr3895 It's was a joke ;)
@arnavkmr3895 Жыл бұрын
@@magicman-sv3jm and clearly a funny and thought out one :) and actually everything is accurate if we drop the x from exponents to product, so you've been charged free from your atrocities magic man... for now
@wowcheers7488 Жыл бұрын
I do admire and feel the sincerity of your content. More success and support to you. Cheers. 💕
@learncommunolizer Жыл бұрын
Thank you so much 🤗 @wowcheers7488
@Goldieridesbike Жыл бұрын
Cool video!
@learncommunolizer Жыл бұрын
Thanks! Glad you enjoyed it
@supersbbrawl4ever Жыл бұрын
Reminds me of when I was 16... All those log rules really fell straight out of my brain, or so I thought. Stuck within the deep recesses of my memory, they were residing in this whole time.
@lordndrew Жыл бұрын
Yeah. I’m surprised I Rem the log rules even though I learnt them 23 years ago.
@supersbbrawl4ever Жыл бұрын
@@lordndrew Wow, 23 years and its still all there too? Nine years in my case
@studycat2658 Жыл бұрын
Great explanation! Very interesting problem
@learncommunolizer Жыл бұрын
Glad it was helpful!
@NeelBasu Жыл бұрын
Watching that without sound. Looked like a satisfying video.
@learncommunolizer Жыл бұрын
Glad you enjoyed it!
@charlesmitchell5841 Жыл бұрын
Very good explanation going through all the steps. Thanks! 👍
@learncommunolizer Жыл бұрын
You're welcome!👍👍👍
@Yeutoan-886 күн бұрын
Good
@masatenisiTR Жыл бұрын
Math skills refreshed, thanx...
@soumyshrivastav5561 Жыл бұрын
Nice que. Thanks bro
@learncommunolizer Жыл бұрын
Thanks too! Your Welcome!
@AngeloMastroberardino Жыл бұрын
Very nice explanation
@learncommunolizer Жыл бұрын
Thanks and welcome
@AprendiendoAprenderFerrero Жыл бұрын
Good explanation
@learncommunolizer Жыл бұрын
Thanks and welcome
@vladimirrainish841 Жыл бұрын
Let's divide both parts on 6ˣ. We get (3/2)ˣ - 1 = (2/3)ˣ. If y = (3/2)ˣ then y - 1 = 1/y y² · y - 1 = 0 so y = (1 + √5)/2 hence x = log₃/₂(1+√5)/2
@jim23762 жыл бұрын
Problems like this are essentially formulaic. So ln(golden ratio)/ln(3/2).
@kwstaskalaboukas83062 жыл бұрын
Beautiful content bro,but this ain't Olympiad material✌️♥️
@learncommunolizer2 жыл бұрын
Yes it is
@alainbel642 жыл бұрын
@@learncommunolizer q@
@alainbel642 жыл бұрын
QAa@@learncommunolizer aaa
@alainbel642 жыл бұрын
Aa11
@nagyzoli2 жыл бұрын
@@learncommunolizer To be fair nope.. at least in Romania, this is high school level 10th grade problem. Olimpiads would use an example that does not simplify to biquadratic and you would employ Taylor series derivations
It's around 1.2 I used geometrical solution. Set on a graph both side of the equation using different options with whole numbers. Where the graphs meet you find the solution.
@sdias1 Жыл бұрын
Being a post graduate in maths i felt the maths difficulty level first time in my life after seeing your pace and even writing minute details :- maths is dead now
@tonitalas17578 ай бұрын
Beautiful problem, but not tough enough for Olympiad
@karlaescorza14613 ай бұрын
9z
@karlaescorza14613 ай бұрын
Zz
@karlaescorza14613 ай бұрын
z😊si 😊z
@karlaescorza14613 ай бұрын
00p😅
@benben5861 Жыл бұрын
I like the way you present it, Bravo!!
@MarcinBarylski Жыл бұрын
Asrrf
@MarcinBarylski Жыл бұрын
Hjp😅 Jgj
@pauljdowney Жыл бұрын
humbly... rewrote as.. 2^x*1.5^x*2^x*1.5^x-2^x*1.5^x*2^x-2^x*2^x = 0 1.5^x*1.5^x - 1.5^x - 1 =0 define u = 1.5^x u^2 -u - 1 =0 u = (1+- sqrt(5))/2 = 1.5^x take the ln of both sides x = ln(1+sqrt(5)) / ln(1.5) = 1.18681439 approx , drop the negative (ln of negative)
@jcherrera70 Жыл бұрын
Great job. I would consider the problem solved at 8:41
@555cr Жыл бұрын
The difference between the logarithmic calculation and the Newton-Raphson method lies in the nature and approach of the solution. In calculating with logarithms, I applied logarithms to both sides of the equation and tried to simplify the equation by bringing the exponent forward. However, this approach works only if the equations are simplified by their logarithmic properties. The correct solution was not obtained because the given equation was not in such a simple form. The Newton-Raphson method, on the other hand, is a numerical technique that uses iterative computations to find approximate solutions to equations. This method allows you to iteratively approach the solution using the derivative of the function. Starting from an initial value, iteratively computes an approximate solution, repeating the iterations until the convergence condition is met. The results of the Newton-Raphson method may vary depending on how the initial values are selected and the convergence conditions are set. Also, the amount of computation and the speed of convergence may vary from problem to problem. As mentioned above, the difference between the calculation using logarithms and the Newton-Raphson method is due to the difference in the nature and approach of the solution method. Calculations using logarithms are limited to simple forms, while the Newton-Raphson method is used to find approximate solutions to general equations.
@yasarkosan7364 Жыл бұрын
What a long and beutiful journey
@bernym4047 Жыл бұрын
Impressive and very clearly explained. I was not aware of the several rules that you employed to transform the formulae si I need to research those to understand this in full. But thank you for demonstrating.
@learncommunolizer Жыл бұрын
Thanks and Welcome ✌️
@ceccavara Жыл бұрын
i like how most kept on watching without having a clue of what is going on, like me.
@nikhilsmathematics7048 Жыл бұрын
Very nice explanation. Because of this video I have revised 3 chapters, quadratic equations, logarithms, exponents
@learncommunolizer Жыл бұрын
Excellent.All the best!
@f910104 Жыл бұрын
if you approximate to decimal during Olympiad, your answer is wrong. In addition, if approximation is allowed, simply using a brute force with the expected precision with a small piece of code will do better.
@lampad4549 Жыл бұрын
Why is the answer wrong?
@charleswr8359 Жыл бұрын
9^x-6^x-4^x = 3^(2x)-3^x*2^x - 2^(2x) = 0 => divide by 2^(2x) (3/2)^(2x) - (3/2)^x - 1 = 0. Let y=(3/2)^x y^2 - y - 1 = 0.
Жыл бұрын
Amazing
@learncommunolizer Жыл бұрын
Thanks 🙏❤️🙏
@oswin627 Жыл бұрын
That's a perfect explanation.
@learncommunolizer Жыл бұрын
Thanks! Glad it was helpful!
@취미생활-x2h Жыл бұрын
what a beautiful math.
@RixtronixLAB Жыл бұрын
Nice video, thanks :)
@learncommunolizer Жыл бұрын
Thank you too!
@poseidon.M Жыл бұрын
Perfect🎉
@owtwiepirate5238 Жыл бұрын
9^x-6^x=4^x ...(1) Divide (1) by 4^x [(3/2)^x]^2-(3/2)^x=1 ...(2) [(3/2)^x]^2-(3/2)^x-1=0 ...(3) (3/2)^x-1/2-(5)^(1/2)/2=0 ...(4) (3/2)^x-1/2+(5)^(1/2)/2=0 ...(5) But (5) is not satisfy (4): x= log[1/2+5^(1/2)/2] Note: log means log base 1.5
@Granth_Sangrah2 жыл бұрын
Nice make rules are clear 👌
@learncommunolizer2 жыл бұрын
Thanks 🙂
@georgesadler7830 Жыл бұрын
Thank you for a well-organized math video.
@learncommunolizer Жыл бұрын
You're very welcome!
@jjh4900 Жыл бұрын
1. Divide both sides by 6^x 2. (3/2)^x = X (X>0) 3. solve X^2-X-1=0 (X>0)
@heraldomaciel9853 Жыл бұрын
Very Nice! I got too!
@learncommunolizer Жыл бұрын
Cool, thanks!
@fredgandolfi2356 Жыл бұрын
Fun. Reminds me how much I enjoyed math in school and somewhat sadly how much I forgot since then.
@yujunmomma2484 Жыл бұрын
I am not even interested in this math but i kept watching…
@terratorment2940 Жыл бұрын
That's wild. My recollection of logarithms is a bit rusty. I probably never would have thought of those first few steps either
@abeonthehill166 Жыл бұрын
Your explanation was so detailed and eloquent , i actually followed each step. Thanks for sharing……..
@learncommunolizer Жыл бұрын
Glad it was helpful! Your welcome!
@erloos6791 Жыл бұрын
what is the pen are u using in this video sir can u pls reply me with link to buy this?
@robertkapic6505 Жыл бұрын
Few steps ( log base 3/2) were unnecessary. But it was fun and reminded me of when I went to school.
@rupertkeller2074 Жыл бұрын
Good work
@learncommunolizer Жыл бұрын
Thanks🙏
@ОльгаСемина-з9л Жыл бұрын
Мне 61... Но до первой половины все ясно... дальше темный лес... Во истину математика гимнастика 🤸♂️ для ума..
@akibdekpa7069 Жыл бұрын
Nice ❤️❤️
@learncommunolizer Жыл бұрын
Thanks 🤗🥳
@skyer.2299 Жыл бұрын
算那步一元二次方程为什么不直接配方?公式法岂不是算起来很麻烦??
@peelna2169 Жыл бұрын
I think if the step like this so long, the " trial and error method " is more suitable
@stonejerome8291 Жыл бұрын
nice
@learncommunolizer Жыл бұрын
Thanks
@ActMedInfo Жыл бұрын
I dont undestand how log (1+√5) turned into log 3*236....
@dashcam3683 Жыл бұрын
Thank you, these things almost scattered my brain in my high school days, just found out it was just fun and simple.
@learncommunolizer Жыл бұрын
You're very welcome!
@rodicacojoc36368 ай бұрын
Explici lucrui simple cum sunt operaiile cu puteri sau acolo unde se aplica formula produsului de sumă a doi termen prin difența acelorași doi temeni , dar în final treci repede . De pildă ultimul logartm în ce bază era? Pobabil în baza 10, adică era logartm zecimal (pt care se pot lua valori din tabele sau de pe calculator) .După câte știu, logaritmul zecimal se noteaza cu lg.
@DianaDawnDestiny Жыл бұрын
My dad made me do this as practice when starting 8th grade.
@ankitgupta-sn2xk Жыл бұрын
how did you calculate the complex division and multiplication.. for example 9^1.486
@shadow_1213 Жыл бұрын
With some abstract algebra applied to exponential equation: x = log((√5 - 1)/2)/log(2/3)
@barsuk956 Жыл бұрын
Good 👍
@learncommunolizer Жыл бұрын
Thank you! Cheers!
@mathpuzzles63522 жыл бұрын
Good video, thanks
@learncommunolizer2 жыл бұрын
Glad it helped
@Hehehaw-tv4rs Жыл бұрын
Really skillful, hope I will gain skill like you.
@Kusy777ify2 жыл бұрын
Any problem solving way without using calculator ?
@MrKockabilly Жыл бұрын
Nice one. But please use "is equal to" not "is equals to". Sorry, I just noticed a lot (and I mean a lot) of people explaining calculations make that mistake
@lorenzos.4442 Жыл бұрын
Very nice
@learncommunolizer Жыл бұрын
Thanks
@florianvincent3932 Жыл бұрын
J’avais trouvé ! Yes ! Pensez à ramener à polynôme du second degré et ln est apparu la meilleure approche Le tout est de trouver le bon X! Hahaha