A Nonstandard Equation With Exponentials

  Рет қаралды 2,283

SyberMath

SyberMath

Күн бұрын

Пікірлер: 20
@spelunkerd
@spelunkerd 9 сағат бұрын
Gotta love it when one can solve the Lambert function by eye without calculations.
@Blingsss
@Blingsss 11 минут бұрын
Exponential equations always feel like puzzles with infinite twists. This video made an otherwise tricky concept surprisingly engaging! It also reminded me how helpful platforms like SolutionInn can be for breaking down complex topics.
@miraj2264
@miraj2264 12 сағат бұрын
If you take the derivative, you get e^(x^2 + 2x)*[2*(x+1)^2 + 1]. This is clearly greater than 0 for all x, therefore, the original function is strictly increasing i.e. there's at most 1 real solution. From there, you can pretty easily see that x = 0 works. If you want to motivate x = 0, note that 1/(1+x) converges to its geometric series for x belonging to (-1,1). So ln(1+x) can be described as the integral of that series on the same interval. Plugging in x = -1 and 1 into (x+1)e^(x^2+2x) yields 0 and 2e^3. So by IVT and the fact that the function is strictly increasing, there is a single point between x = -1 and x = 1 s.t. (x+1)e^(x^2+2x) = 1 i.e. we can treat ln(1+x) as the integral of the geometric series since our solution lies in the radius of convergence. So first take natural log of both sides ==> ln(x+1) + x^2 + 2x = 0 ==> ln(x+1) = -x^2 - 2x ==> x(1 - x/2 + x^2/3 - ... + ) = -x(x+2). The fact that both sides are a multiple of x, suggests that x = 0 is a potential solution. From there, you can check that is indeed the solution.
@SyberMath
@SyberMath 7 сағат бұрын
That's a really clever approach to finding the solution!
@cav1928
@cav1928 12 сағат бұрын
Another method without using Lambert W functions: e^(x+1)^2 = e^(x^2+2x +1)-->(x+1) = u and u*e^(u^2 -1) = 1 -->u*e^u^2 = e , multiplying both sides by u--->u^2*e^(u^2) = e*u therefore u=0 -->x=0 or x=-2 , replacing can be seen that the only solution is x=0.
@mcwulf25
@mcwulf25 10 сағат бұрын
Nice. And you don't really need to know about W to solve this.
@aekben7312
@aekben7312 13 сағат бұрын
👍
@scottleung9587
@scottleung9587 13 сағат бұрын
I also got x=0 as the only solution.
@giuseppemalaguti435
@giuseppemalaguti435 13 сағат бұрын
(x+1)e^((x+1)^2)=e.,.[x+1=t]...=te^(t^2)=e...[^2]...t^2e^(2t^2)=e^2...2t^2=W(2e^2)...t=√W(2e^2)/√2..=√2/√2=1...x=1-1=0
@KennethChile
@KennethChile 4 сағат бұрын
If W(te^t) = y and y >0, then there is only one solution :)
@rakenzarnsworld2
@rakenzarnsworld2 7 сағат бұрын
x = 0 or -2
@c0ckyb4st4rd
@c0ckyb4st4rd 12 сағат бұрын
Could you solve this let f(x)=aˆx and g(x)=log_a(x) Solve a so that these functions only touch once
@rob876
@rob876 9 сағат бұрын
(x+1)e^((x+1)^2) = e 2(x+1)^2 e^(2(x+1)^2) = 2e^2 2(x+1)^2 = 2 x + 1 = ±1 x = -2 (extraneous) or x = 0
@alesnecas7410
@alesnecas7410 Сағат бұрын
Why are you squaring.
@alesnecas7410
@alesnecas7410 Сағат бұрын
Why so many steps. Multiply both sides by e. Let y = x +1 =>. y*e^y^2=e. The only solution is y=1 or x = 0.
@nickarrizza
@nickarrizza 12 сағат бұрын
Cool!
@robertlunderwood
@robertlunderwood 6 сағат бұрын
x = 0 by inspection. I took the calculus route to show that the function was always increasing.
@supeskrim
@supeskrim 8 сағат бұрын
No. Bye.
@SyberMath
@SyberMath 7 сағат бұрын
😄
A Nice Quartic Equation
9:38
SyberMath
Рет қаралды 2,5 М.
An Interesting Homemade Differential Equation
11:30
SyberMath
Рет қаралды 4 М.
#behindthescenes @CrissaJackson
0:11
Happy Kelli
Рет қаралды 27 МЛН
Хаги Ваги говорит разными голосами
0:22
Фани Хани
Рет қаралды 2,2 МЛН
A Diophantine Equation  @dhdkro
14:11
Prime Newtons
Рет қаралды 17 М.
Math News: Knights are 24/13 Times Faster Than Kings
13:19
Dr. Trefor Bazett
Рет қаралды 19 М.
sin x + cos x =1  Solved  [ IB Math]
5:43
IB Math Master
Рет қаралды 30 М.
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 364 М.
Simplifying An Interesting Radical
9:51
SyberMath
Рет қаралды 4,5 М.
I hope you didn't forget your linear algebra for this integral!
15:53
Hardest Exam Question | Only 8% of students got this math question correct
11:28
What does it feel like to invent math?
15:08
3Blue1Brown
Рет қаралды 4,2 МЛН
An Interesting Equation With Euler's Number
8:57
SyberMath
Рет қаралды 4,5 М.
#behindthescenes @CrissaJackson
0:11
Happy Kelli
Рет қаралды 27 МЛН