A Quick Trigonometry Problem From the JEE Advanced Exam

  Рет қаралды 4,483

letsthinkcritically

letsthinkcritically

Күн бұрын

Пікірлер
@randomjin9392
@randomjin9392 2 жыл бұрын
You're getting away with the fact that among these solutions it's impossible to have cos(x) = 0 or sin(5x) = 0. Normally you would want to cover for the fact that both tangent and cotangent are defined in the original equation.
@vcvartak7111
@vcvartak7111 2 жыл бұрын
I think the general solution should be pi/12+ pi/6(even integers) that will cater half solution s of pi/12+pi/3(integer)
@霍金本人
@霍金本人 2 жыл бұрын
Wdym? pi/12+npi/3 is subset of pi/12+npi/6. And we are finding intersection of these two sets, so the sol is the subset which is pi/12+npi/3
@georgekhy
@georgekhy 2 жыл бұрын
sin 2x = cos 4x = sin(pi/2 - 4x), so 2x = npi + (-1)^2 (pi/2 - 4x) Similar method works for tan and cot. It will be slightly more elementary.
@george2358
@george2358 2 жыл бұрын
Another simpler way to solve this is by using the fact that tanx=cot(90-x) and sinx=cos(90-x)
@mouskatoodle
@mouskatoodle 2 жыл бұрын
But this is only valid when x
@rocky171986
@rocky171986 2 жыл бұрын
@@mouskatoodle It's valid over all real x, not just positive x
@cobokobo2115
@cobokobo2115 2 жыл бұрын
@@mouskatoodle amazing .................kzbin.info/www/bejne/i52UepSlj8aahdE
@mcwulf25
@mcwulf25 2 жыл бұрын
More accurately, sin(X) = cos (2nπ+π/2 - X), which is the method I used.
@mouskatoodle
@mouskatoodle 2 жыл бұрын
@@rocky171986 oh. I was not aware of that. Thank you for correcting me
@STF413
@STF413 2 жыл бұрын
Why "some integers n" instead of "all integers n"?
@adiaphoros6842
@adiaphoros6842 2 жыл бұрын
“Some integer n” = “Where n is some integer” = “Where n is an arbitrary integer” = “For all integers n”
@STF413
@STF413 2 жыл бұрын
@@adiaphoros6842 Actually, my question was rhetorical. "(For) some integer n" is *NOT* "For all integers n" because if something is true for a subset (cf "some integer n"), that does NOT mean the statement is true for the whole set. It was wrong to say "for some integer n"
@adiaphoros6842
@adiaphoros6842 2 жыл бұрын
@@STF413 TL;DR “For some integer” ≠ ”For some integers” The construction “for some [singular noun]” has been used in English to mean “for an arbitrary [singular noun]” Note, this is different from the construction “for some [plural noun]” If the latter is what you’re referring to, then you’re right. This is not a mathematical statement, rather a linguistic one. Though, I think he could’ve just written: ∀n∈ℤ which uses less characters.
@STF413
@STF413 2 жыл бұрын
@@adiaphoros6842 LOL LOL LOL 🤣🤣🤣 Your argument is very flawed. Since you didn't want to read my comment (TL;DR), I don't see why I would explain more why you're wrong. Go ahead and think you're right if you like. There are a lot of "Dunning-Kruger"-ish people happily living in the world 😆
@adiaphoros6842
@adiaphoros6842 2 жыл бұрын
@@STF413 Are you talking about yourself? Since you’re arguing against something so obvious. Weird you tagged me.
@QuentinStephens
@QuentinStephens 2 жыл бұрын
Why are you specifying integers rather than cardinals? Integers can be negative.
@RGP_Maths
@RGP_Maths 2 жыл бұрын
Didn't you just answer your own question? The final solution is valid for all integers n, whether positive, negative or zero.
@राजनगोंगल
@राजनगोंगल 2 жыл бұрын
👏👏👏👏👏👏👍👍👍👍👍👍🙏🙏🙏🙏🙏🙏
@swagmoneybuge
@swagmoneybuge 2 жыл бұрын
Couldn't to rewrite cot(5x) to tan(1/5x) then do 1/5x=x and solve from there?
@madhavrathi6770
@madhavrathi6770 2 жыл бұрын
No , that's not how it works , I guess .
@madhavrathi6770
@madhavrathi6770 2 жыл бұрын
They are complementary so you could write that as cot(5x) = tan(90-5x)
@STF413
@STF413 2 жыл бұрын
Of course not. Because cot (5x) = 1 / tan (5x) which is NOT tan (1/5x)
@VaibhavRahalkar
@VaibhavRahalkar 2 жыл бұрын
That rule apply for inverse functions
@nirmankhan2134
@nirmankhan2134 2 жыл бұрын
It could have been solved in a much more easier way
@rishiraj5711
@rishiraj5711 2 жыл бұрын
Tell
@tianqilong8366
@tianqilong8366 2 жыл бұрын
ez
@數學系大大
@數學系大大 2 жыл бұрын
LOL
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН
Solving This Equation With One Simple Trick
9:00
letsthinkcritically
Рет қаралды 9 М.
School Level Trigonometry in the IMO Longlist
6:55
letsthinkcritically
Рет қаралды 8 М.
Solve x! + y! = x^y | Middle European Mathematical Olympiad
9:56
letsthinkcritically
Рет қаралды 17 М.
Oxford Entrance Test Question Solved in Seconds
4:38
letsthinkcritically
Рет қаралды 225 М.
A Diophantine Equation on Prime Powers | Baltic Way 2016 Problem 1
8:35
letsthinkcritically
Рет қаралды 8 М.
Solving double absolute value equation.
5:41
Archimedes Notes
Рет қаралды 363
A Very Quick Trigonometry Problem. The Answer is Surprisingly Simple!
3:27
letsthinkcritically
Рет қаралды 12 М.