A Radical That Does Not Stop

  Рет қаралды 13,798

SyberMath Shorts

SyberMath Shorts

Күн бұрын

Пікірлер: 62
@Blaqjaqshellaq
@Blaqjaqshellaq 21 күн бұрын
Nice one! (At first glance, I wasn't even sure it converged...)
@lukasjetu9776
@lukasjetu9776 20 күн бұрын
same
@matt-fitzpatrick
@matt-fitzpatrick 18 күн бұрын
6:14 the geometric series of sums of geometric series was chefs kiss
@brendanward2991
@brendanward2991 20 күн бұрын
x = given radical. It's fairly easy to show that x^2 = 2*2*x. x^2-4x =0, therefore x=0 or x=4. x=0 is obviously not applicable, so x=4.
@reizinhodojogo3956
@reizinhodojogo3956 19 күн бұрын
x^2 = 4x?
@brendanward2991
@brendanward2991 19 күн бұрын
@@reizinhodojogo3956 Yes.
@akeebplazy1124
@akeebplazy1124 18 күн бұрын
How can u show that x^2 = 4x???
@brendanward2991
@brendanward2991 18 күн бұрын
@@akeebplazy1124 If you can't see yourself, I don't know if you'll be able to follow my method without proper notation, but here it is: x = √2√4√8√16√32√64... x^2 = 2√4√8√16√32√64... = 2*2√√8√16√32√64... =4*√√8√16√32√64... =4*√2√2√16√32√64... =4*√2√2*2√4√32√64... =4*√2√4√4√32√64... =4*√2√4√4*2√8√64... =4*√2√4√8√8√64... =4*√2√4√8√8√64... =4*√2√4√8√8*2√16... =4*√2√4√8√16√16... and so on
@OKchromia
@OKchromia 14 күн бұрын
​@@akeebplazy1124 by solving x^2=4x
@MineKukele
@MineKukele 20 күн бұрын
Very intriguing. Thank you for sharing!
@albertoambram8025
@albertoambram8025 21 күн бұрын
Very nice one. Thanks for sharing.
@pietergeerkens6324
@pietergeerkens6324 19 күн бұрын
Nice problem and solution! Less rigorously, I set the expression as x; and then observed: 2x = 2 √[ 2 √[ 4 √[ 8 √[ 16 √[ 32 √[ ... = √[ 4 * 2 √[ 4 √[ 8 √[ 16 √[ 32 √[ ... = √[ 4 √[ 8 * 2 √[ 8 √[ 16 √[ 32 √[ ... = √[ 4 √[ 8 √[ 16 * 2 √[ 16 √[ 32 √[ ... : = √[ 4 √[ 8 √[ 16 √[ 32 √[ ... and x² = 2 √[ 4 √[ 8 √[ 16 √[ 32 √[ ... = 2 * 2x = 4x. Hence 0 = x² - 4x = x(x - 4) with x = 0 clearly being a failing spurious case from the squaring at step 2.
@danielobeng1587
@danielobeng1587 21 күн бұрын
Informative and helpful
@michaeledwards2251
@michaeledwards2251 20 күн бұрын
Beautifully clear, at first I didn't think it was possible for a finite result : an infinite number of terms greater than 1.
@irhzuf
@irhzuf 14 күн бұрын
None of the terms are greater than 1. They are greater than 0, but the known 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ... = 1 has also it's terms all greater than 0. (if all the terms would be greater than 1 then a normal sum wouldn't exist as you would have to have a number for summing 1's any number of times.
@Sugarman96
@Sugarman96 20 күн бұрын
The sum of x^1+x^2+x^3+...=x/(1-x) for |x|
@OnDaTrainToMath
@OnDaTrainToMath 11 күн бұрын
hi
@ShauyanOfficial13
@ShauyanOfficial13 20 күн бұрын
your voice is back, nice
@tunneloflight
@tunneloflight 8 күн бұрын
How do you solve it. Easy, you look it up in Jan Tuma's amazing reference text of such formulas.
@Twi_543
@Twi_543 20 күн бұрын
This is a nice problem
@andirijal9033
@andirijal9033 10 күн бұрын
The sum of the powers is, deferentiate and multiply again by the ratio
@edwardsteen3058
@edwardsteen3058 21 күн бұрын
Cool!
@AliKhavashi
@AliKhavashi 11 күн бұрын
The Greatest Math-Professor of all time........
@cytos
@cytos 19 күн бұрын
What an incredibly long solution. This is how I solved it: Notice y=√2√4√8√16… can be written as y=√2ay because the sequence after the first √2 is the same as y multiplied by some constant a. a will be equal to √2√2√2… (multiplying each consecutive entry by 2). a=√2√2√2… can be written as a=√2. After performing basic algebra, we get a=2. (a can not equal 0) We now know that a=2, so y=√2ay can now be written as y=√4y. After performing more basic algebra, we get y, the variable we are looking for, is equal to 4. This is a somewhat lengthy explanation, but if you know the tricks, you can solve it in under a minute like this.
@irhzuf
@irhzuf 14 күн бұрын
This constant doesn't exist as it is a nested radical not just sqrt(2)*sqrt(4)*..., but sqrt(2*sqrt(4...)). Actual answer is 2.
@cameronspalding9792
@cameronspalding9792 20 күн бұрын
Personally I would have used the equation 1/(1-x)= 1+x+x^2+x^3+… for |x|
@Sugarman96
@Sugarman96 20 күн бұрын
Due to the indexing, I'd start from x/(1-x), but otherwise that's the approach I'd take too
@matthewfeig5624
@matthewfeig5624 17 күн бұрын
@@Sugarman96 You can start the index at n=1 or n=0 since 0/2^0 = 0. Also x/(1-x) + 1 = x/(1-x) + (1-x)/(1-x) = 1/(1-x), so the two functions x/(1-x) and 1/(1-x) differ by the constant 1.
@Ezechiel-pk6ku
@Ezechiel-pk6ku 15 күн бұрын
Nevermind I answered that myself by looking at the first term, it technically being 1.414, no 1/2 of 2, I'm stupid
@aczajka74
@aczajka74 20 күн бұрын
I'm a simple man. I see infinite product, I take log
@TinyFoxTom
@TinyFoxTom 19 күн бұрын
7:33 Wow, -1/12 really does try to pop up where infinite sums abound.
@reizinhodojogo3956
@reizinhodojogo3956 19 күн бұрын
-1/12 is a random value, i don't think it makes sense for it to try to go in infinite sums, unless its specifically constructed to get -1/12
@irhzuf
@irhzuf 14 күн бұрын
​@@reizinhodojogo3956it isn't a random value as it is an answer for the Ramanujan summation of 1 + 2 + 3 + ... which is a pretty known divergent infinite series, but yea when talking about actually converging infinite series then I think it could be considered pretty random
@reizinhodojogo3956
@reizinhodojogo3956 14 күн бұрын
@@irhzuf how is 1+2+3+... -1/12?? that doesn't make any sense or logic to me, cause: 1. the sum is only natural numbers(positive integers), -1/12 is a negative fraction 2. all the numbers in the SUM are positive, and no negatives, -1/12 is negative 3. all the values only get bigger to the right of the sum, never smaller, and there are only plus(+) operators, which only add up to the total sum the sum is infinite as far as i know, 1+2+3+... = ∞
@irhzuf
@irhzuf 14 күн бұрын
@@reizinhodojogo3956 it isn't a normal sum basically Ramanujan summation is used as kind of characteristics of divergent infinite series (it is just a number that people sometimes place on divergent infinite series, because it can be useful)
@irhzuf
@irhzuf 14 күн бұрын
@@reizinhodojogo3956 wikipedia articles for more info: en.m.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF en.m.wikipedia.org/wiki/Ramanujan_summation
@jf3518
@jf3518 19 күн бұрын
Just rewrite the equation as x = sqrt(2 * 2 * x) and solve with the quadratic formular
@Starblazer-oc4nt
@Starblazer-oc4nt 20 күн бұрын
I just turned that into sqrt(2x)=x solving for x
@Ezechiel-pk6ku
@Ezechiel-pk6ku 15 күн бұрын
So it's 1?
@aloi4
@aloi4 8 күн бұрын
Let x = 2√(2√(4√(8√...))) 2√(a) = √((2×a)×2) → 2√(2√(4√(8√...))) = √(4×2√(4√(8√...))) = √(4√(8×2√(8√...))) = √(4√(8√(16×2√...))) → 2x = √(4√(8√(16√...))) → x = √(2×2x) → x² = 4x → x=0 or x=4 However x≠0, therefore x=4
@brendanward2991
@brendanward2991 14 күн бұрын
x = √2√4√8√16√32√64... x^2 = 2√4√8√16√32√64... = 2*2√√8√16√32√64... = 4*√√(4*2)√16√32√64... =4*√2√2√16√32√64... =4*√2√2√(4*4)√32√64... =4*√2√(2*2)√4√32√64... =4*√2√4√4√(4*8)√64... =4*√2√4√(4*2)√8√64... =4*√2√4√8√8√(4*16)... =4*√2√4√8√(8*2)√16... =4*√2√4√8√16√16... and so on.
@black_eagle
@black_eagle 21 күн бұрын
It's easier to use recurrence: Let x = sqrt(2*sqrt(4*sqrt(8 ... => x^2/2 = sqrt(4*sqrt(8*sqrt(16 ... = sqrt(2*2*sqrt(2*4*sqrt(2*8 ... = sqrt(2*sqrt(2*sqrt(2 ... * x = 2^1/2 * 2^1/4 * 2^1/8 * ... * x = 2^(1/2 + 1/4 + 1/8 + ...) * x = 2^1 * x => x^2/2 = 2x => x = 4.
@yurenchu
@yurenchu 20 күн бұрын
The last equation, (x^2)/2 = 2x actually has _three_ possible solutions: x = 0 , x = 4 , x = +infinity . How would you know that x = +infinity is not the actual answer to the question?
@alexicon2006
@alexicon2006 20 күн бұрын
​@@yurenchuThe same way we dont put infinity as a possible solution for equations like x²-4x=0? Since when have we started getting infinity as ONE of the solutions. Infinity can ONLY be an answer when NO other valid solution is there. THEN it would limit to infinity. And we clearly know x isnt 0. I mean one look at the nested radical confirms that. These are called extraneous roots. They are completely normal in recurrence based polynomials. You just gotta have common sense to tell them apart from the actual solution.
@aczajka74
@aczajka74 20 күн бұрын
​@@alexicon2006infinity is a reasonable answer to consider here because the quantity is an infinite product that (a priori) very well might diverge to infinity. The point is that the Algebraic approach can be used to tell us the value of the expression IF IT CONVERGES, but it doesn't prove that the expression converges.
@alexicon2006
@alexicon2006 20 күн бұрын
@aczajka74 Yeah I know. But that doesnt MAKE the Algebraic method itself WRONG. THATS my point. Proving convergence is a whole other process. The algebraic method is NOT responsible for that. That is what I meant.
@robertveith6383
@robertveith6383 20 күн бұрын
Original poster, your sixth line is wrong, because each of your fractional exponents must be inside grouping symbols.
@f5673-t1h
@f5673-t1h 20 күн бұрын
The answer is 4 because the exponents are obvious and the resulting series is a well-known one summing to 2.
@robertveith6383
@robertveith6383 20 күн бұрын
That is *not* sufficient work. Your post is *invalid.*
@yurenchu
@yurenchu 20 күн бұрын
_Answer_ : 4 _Calculation_ (from the thumbnail): X = = √(2 * √(4 * √(8 * √(16 * √(32 * √(...)))))) = (√2) * (√√4) * (√√√8) * (√√√√16) * (√√√√√32) * ... = 2^(1/2) * 4^(1/4) * 8^(1/8) * 16^(1/16) * 32^(1/32) * ... = 2^(1/2) * 2^(2/4) * 2^(3/8) * 2^(4/16) * 2^(5/32) * ... = 2^(1/2 + 2/4 + 3/8 + 4/16 + 5/32 + ...) = 2^W where W = { Σ k/(2^k) , from k=0 to k=∞ } Note that (1 - xⁿ⁺¹)/(1 - x) = 1 + x + x² + x³ + ... + xⁿ and hence for |x| < 1, 1/(1-x) = lim_{n--> ∞} (1 - xⁿ)/(1 - x) = 1 + x + x² + x³ + x⁴ + x⁵ + ... Let f(x) = 1/(1-x) , then f'(x) = 1/(1 - x)² = 0 + 1 + 2x + 3x² + 4x³ + 5x⁴ + ... Let g(x) = x*f'(x) ==> g(x) = x/(1 - x)² = x + 2x² + 3x³ + 4x⁴ + 5x⁵ + ... then W = ( ½ + 2*(½)² + 3*(½)³ + 4*(½)⁴ + 5*(½)⁵ + ... ) = g(½) = (½)/(1 - ½)² = (½)/(½)² = 1/(½) = 2 and therefore, X = 2^W = 2^2 = 4
@Twi_543
@Twi_543 20 күн бұрын
Cold
A Nice Exponential Equation
8:56
SyberMath Shorts
Рет қаралды 2,4 М.
Solving a 'Harvard' University entrance exam
11:31
MindYourDecisions
Рет қаралды 336 М.
The Singing Challenge #joker #Harriet Quinn
00:35
佐助与鸣人
Рет қаралды 42 МЛН
Perfect Pitch Challenge? Easy! 🎤😎| Free Fire Official
00:13
Garena Free Fire Global
Рет қаралды 98 МЛН
Из какого города смотришь? 😃
00:34
МЯТНАЯ ФАНТА
Рет қаралды 2,4 МЛН
An Infinite Sum With Factorials
11:10
SyberMath
Рет қаралды 9 М.
A simple question most people get wrong
9:10
MindYourDecisions
Рет қаралды 212 М.
Solving A Quartic #algebra
8:38
SyberMath Shorts
Рет қаралды 347
Why Is This Almost An Integer?
9:03
Dr Barker
Рет қаралды 34 М.
Square Root of a 2x2 Matrix: Can We Do That?!?
33:17
Maths Like A Legend
Рет қаралды 44 М.
How does a calculator find square roots?
11:24
The Unqualified Tutor
Рет қаралды 314 М.
The Subfactorial is Hilarious
24:00
Wrath of Math
Рет қаралды 135 М.
Factoring Quadratics WITHOUT Guessing Product & Sum
20:01
JensenMath
Рет қаралды 117 М.
The Rubik's Cube is a Calculator
13:53
TheGrayCuber
Рет қаралды 60 М.
Singapore test question that left students crying
11:24
MindYourDecisions
Рет қаралды 106 М.
The Singing Challenge #joker #Harriet Quinn
00:35
佐助与鸣人
Рет қаралды 42 МЛН