There is a much easier way. Given that sin^2 + cos^2 = 1, and 0
@SyberMath3 жыл бұрын
Cool!
@playomar51062 жыл бұрын
Wow.
@SanctBlack2 жыл бұрын
On 10th second I though about the same solution when imagine picture of c^5+s^5
@garvellokenxvi Жыл бұрын
0
@RigoVids Жыл бұрын
The only thing to note which maybe falsely concluded from this explaination is the range of cos^5(x). The range or codomain of the function is -1
@SyberMath4 жыл бұрын
I don't think this problem has been solved and published on the internet before. Correct me if I'm wrong. I'm kind of surprised why it wasn't because it is not a super original idea. Anyone can come up with an equation like this. The fun part was to test if one equation would imply the other. I knew that one way implication worked but was not sure about the if-and-only-if scenario! Generally quintics are not solvable. (Isn't that sad?) Well, I think they are awesome! Any thoughts? Plz share down below...
@yogamulyadi91833 жыл бұрын
I ever seen this on your Twitter.., And thanks to that, I learned several things...
@serands18404 жыл бұрын
S² + C² = 1. S^5 = S² iff S = 0 or 1. Idem for C. Otherwise S^5 < S² and C^5 < C². (S and C between -1 and 1) Thus S^5 + C^5 always < 1. Thus the only solutions are for (S,C)=(0,1) or (1,0)… i.e. 0 and pi/2 mod 2pi…
@SyberMath4 жыл бұрын
Good thinking!
@BCS-IshtiyakAhmadKhan4 жыл бұрын
I also did the same way
@davidseed29393 жыл бұрын
This method is used on youtube for C^100+S^100=1 as a competition question
@dustinbachstein37293 жыл бұрын
Yeah, this video could have been made 22 minutes shorter xD
@TJStellmach3 жыл бұрын
S^5+C^5
@hosseinmohammadi28003 жыл бұрын
The good point about your way is that we can find the imaginary answers easier. I liked it
@kingbeauregard3 жыл бұрын
I took the derivative of the function to see where the extrema were, and found out that the maxima were at x = 0 or pi/2, which also happened to be where the function equals 1.
@SyberMath3 жыл бұрын
Nice!
@VSN10013 жыл бұрын
I did the same and found out that there are infinity many sol
@telnobynoyator_61833 жыл бұрын
@@VSN1001 yeah bc cos(x + 2pi) = cos(x) and so on
@bilal42nga473 жыл бұрын
.
@cheesefrogsnail3 жыл бұрын
Yes I did the same, there is another local maximum in 5PI/4 but it is negative
@bkclaud21353 жыл бұрын
Thinking out of the box👏🏾. You literally had to come up with another equation and solve by substitution with the original problem. Wow ok
@SyberMath3 жыл бұрын
Thanks! 😊
@marklevin32363 жыл бұрын
Much simpler than that for any x sin^5(x)
@phandinhthanh22953 жыл бұрын
I don't really get it. Could u, please, elaborate?
@italixgaming9153 жыл бұрын
@@phandinhthanh2295 Easier to see in my solution: cos^5(x)+sin^5(x)=cos²(x).cos^3(x)+sin²(x).sin^3(x). 1=cos²(x)+sin²(x). Then I can write your equation under the form: cos²(x).cos^3(x)+sin²(x).sin^3(x)=cos²(x)+sin²(x) cos²(x).[cos^3(x)-1]+sin²(x).[sin^3(x)-1]=0 But cos^3(x)-1
@luismuller65052 жыл бұрын
21:35 "If you divide both sides by 0" is the best thing in the derivation of the answers. 😂
@SyberMath2 жыл бұрын
😁
@alax1553 жыл бұрын
21:37 "And if you divide both sides by 0". At first, I was like "Wait, whaaaaat", but then I saw you meant "by 2" xD
@benvickers88214 жыл бұрын
What a fantastic explanation of the solution to this problem. Love your videos!!!
@SyberMath4 жыл бұрын
Glad you like them!
@avrahambercovich6673 жыл бұрын
@@SyberMath אני חושב אני אוהב א אני את זה אבל אמא א
@fm74903 жыл бұрын
I solved for tan(x/2) For substitution: cosx= (1-t^2)/(1+t^2) Sinx=2t/(1-t^2) Where t=tan(x/2) Then find t, then x/2, then x
@SyberMath3 жыл бұрын
Interesting
@AtomicMathematics3 жыл бұрын
This is an interesting problem from Math Olympiad. Here the general solution is x=2n⫪, (4n+1)⫪/2. You can check this video for the solution kzbin.info/www/bejne/rZutfJuFj56SgZo
@vascomanteigas94333 жыл бұрын
If you apply the Weierstrass substitution: sin(x)=2*t/(1+t^2) and cos(x)=(1-t^2)/(1+t^2). It will get a 10th degree polynomial. Each Root are then derived from x=2*arctan(t)+2*pi*n.
@SyberMath3 жыл бұрын
Wow!
@זאבגלברד3 жыл бұрын
To solve sinx + cosx = 1 there is a known technic to write it as sinx + tg45 cosx =1 , then multiply both sides by cos45. You get sin(x+45)=cos45 ...
@SyberMath3 жыл бұрын
That's a good one!
@akshaybagaria49413 жыл бұрын
Solving this with inequality x^2>x^5 when x
@meowmeow-yq9xt3 жыл бұрын
Thanks I like this problem You guys are one of my hope that i will learn new and it needed from the beginning but my country education system doesn't fit in me. I can't even do something . But when I got my phone I realized that I shouldn't misuse of this device then step by step I found you and others who teaches free in YT at first I searched for graphical dynamic , optics , mechanics and other physic related then your one video came as recommendation I watched and I liked the way you teach and I can clearly understand your accent then it made me to subscribe your channel . Thanks for the videos
@זאבגלברד3 жыл бұрын
I enjoy your math telent. Thank you !
@SyberMath3 жыл бұрын
You are welcome! Thank you!
@sekaibelle4 жыл бұрын
"Hello everyone" :)
@SyberMath4 жыл бұрын
Seeing this comment again after 2 months! 😁
@tonywong86773 жыл бұрын
Solved by plotting graph. The zeros of the function are at 0 and n pi/2. Hence, we can find out if there is any other solutions by plotting the graph of the corresponding function.
@AtomicMathematics3 жыл бұрын
This is an interesting problem from Math Olympiad. Here the general solution is x=2n⫪, (4n+1)⫪/2. You can check this video for the solution kzbin.info/www/bejne/rZutfJuFj56SgZo
@Mosux2007 Жыл бұрын
The quintic can also be factored using synthetic division. May be easier.
@krisbrandenberger5443 жыл бұрын
On the one part, he said "Divide by 0", but meant "Divide by 2."
@hellohabibi1 Жыл бұрын
21:36 "And If you divide both sides by 0"😅
@eliasmazhukin20093 жыл бұрын
In Russia, we call "sin^2 (x) + cos^2 (x) = 1" the Fundamental Identity of Trigonometry (основное тригонометрическое тождество)
@AtomicMathematics3 жыл бұрын
This is an interesting problem from Math Olympiad. Here the general solution is x=2n⫪, (4n+1)⫪/2. You can check this video for the solution kzbin.info/www/bejne/rZutfJuFj56SgZo
@peterwan90762 жыл бұрын
@@AtomicMathematics I watch your solution. I appreciate the part where you figured out S^2(1 - S^3) + C^2(1-C^3) = 0 => S^2(1 - S^3)=0 and C^2(1-C^3) = 0. Genius. After that, it is straightforward.
@omsingh7683 Жыл бұрын
As sine and cosine function are the x coordinate and y coordinate of an arbitrary point on the unit circle centre at the origin therefore sin^2x>=sin^5x and cos^2x>= cos^5x now adding these two inequalities we get sin^5x+cos^5x
@dneary3 жыл бұрын
For the last bit, you can use the "trick" of multiplying acorss by 1/sqrt(2): sin x cos pi/4 + cos x sin pi/4 = sin(x+pi/4) = 1/sqrt(2) implies x+pi/4 = pi/4 or 3pi/4, x=0 or pi/2
@vijaysrini27 Жыл бұрын
How did you get the cubic equation solved? Cubic equation direct problem hasn't been taught in either our school or college till date, and is still a mystery to most people, even in engineering!!!
@SyberMath Жыл бұрын
There's a cubic formula. I used that method many times
@shubhamjha64182 жыл бұрын
from which book this question had been taken?
@SyberMath Жыл бұрын
I don't think it was from a book. I thought of it myself
@salloom1949 Жыл бұрын
I followed your methodology diligently and I understood every step along the way. Thoroughly enjoyed your explanation. But you left me dizzy and with headache. Thank you for a wonderful procedure.
@SyberMath Жыл бұрын
Excellent!
@Jono988062 жыл бұрын
Regarding that mistake in the end, you can write sin x + cos x = sqrt(2)*(1/sqrt(2) sin x + 1/sqrt(2) cos x) = sqrt(2)*(cos(pi/4) sin x + sin(pi/4) cos x) = sqrt(2) sin(x + pi/4). Therefore, sin x + cos x = 1 implies sqrt(2) sin(x + pi/4) = 1, where dividing both sides sqrt(2) gives sin(x + pi/4) = 1/sqrt(2). Therefore, x + pi/4 = pi/4 or x + pi/4 = (3 pi)/4 and solving for x gives x = 0 or x = pi/2.
@grzegorzkondracki46303 жыл бұрын
Solution like an experience during climbing on K2 in one shoe, walking backward. I can admire, but Serands and some others solved this very smart and simply.
@prabhakarbk43223 жыл бұрын
Too good an explanation. I enjoyed the way it is solved
@SyberMath3 жыл бұрын
Thanks a lot 😊
@AtomicMathematics3 жыл бұрын
This is an interesting problem from Math Olympiad. Here the general solution is x=2n⫪, (4n+1)⫪/2. You can check this video for the solution kzbin.info/www/bejne/rZutfJuFj56SgZo
@miloradtomic2 жыл бұрын
Beautiful method, dear friend. Best regards from Serbia
@SyberMath2 жыл бұрын
Many thanks! 🧡
@ostdog93854 жыл бұрын
Very good!!
@SyberMath4 жыл бұрын
Thank you!
@MayankSharma-jz9lc3 жыл бұрын
I had this question for my test and I am surprised how utube recommended this to me
@SyberMath Жыл бұрын
We are being tracked! 😜😂
@jensknudsen42223 жыл бұрын
So, all that work to show that the two solutions you can guess up front by plugging in a few points of the compass are in fact the only two solutions (mod 2pi). Isn't that just math in a nutshell?
@tylerduncan59083 жыл бұрын
Yes but the difference is that he said "i will find out for sure" not "I'm gonna guess and hope those are the only 2 solutions
@dmitryweinstein3153 жыл бұрын
instead of solving the cubic equation exactly, you could have analysed the lines u^5 and 5u-4 and realised that they only have two points in common, u=1 (where the tangents of the two lines equal i.e. no other positive u) and a negative u which is less than -sqrt(2) because at u=-sqrt(2) the line u^5 is still higher than the line 5u-4
@huytrandang2773 жыл бұрын
This, for some reason, is actually entertaining to watch.
@SyberMath3 жыл бұрын
Glad to hear that!
@MrArcan103 жыл бұрын
where you have got u3 from? (this complicated value with cubic roots)
@mikesteele5935 Жыл бұрын
This follows almost immediately from the Cauchy Schwarz inequaliity (if we restrict attention to real x, which seems to have been implicit).
@muhandiz65853 жыл бұрын
21:37 if you divide both side by 2* you said 0 which is was shocking. interesting solution refreshed the arithmetical part of my brain.
@ezzatabdo5027 Жыл бұрын
Thanks for your nice work.
@SyberMath Жыл бұрын
Thank you too!
@think_logically_2 жыл бұрын
sin⁵x ≤ sin²x, cos⁵ x ≤ cos²x (this also covers negative values of sine and cosine), consequently sin⁵ x+ cos⁵ x ≤ sin²x + cos²x = 1. Therefore the equality holds if and only of both inequalities turn into equalities. Thus we get sin⁵x = sin²x, cos⁵x = cos²x , so sine or cosine must be either 0 or 1. Since sine and cosine cannot be both 0, or both 1, one of them must be 1, and another must be zero.
@宇佐見英晴 Жыл бұрын
We can use the trigonometric identity: sin^2(x) + cos^2(x) = 1 to rewrite the equation as: (sin^2(x) + cos^2(x))(sin^3(x) + cos^3(x)) = 1 Expanding the second factor using the identity: a^3 + b^3 = (a + b)(a^2 - ab + b^2) with a = sin(x) and b = cos(x), we get: (sin^2(x) + cos^2(x))(sin(x) + cos(x))(sin^2(x) - sin(x)cos(x) + cos^2(x)) = 1 Using the identity: sin(x)cos(x) = (1/2)sin(2x) we can simplify the third factor to: sin^2(x) - sin(x)cos(x) + cos^2(x) = sin^2(x) - (1/2)sin(2x) + cos^2(x) = 1 - (1/2)sin(2x) Substituting this back into the equation, we get: (sin(x) + cos(x))(1 - (1/2)sin(2x)) = 1 Expanding the first factor using the identity: a+b)^2 = a^2 + 2ab + b^2 with a = sin(x) and b = cos(x), we get: (sin(x) + cos(x))^2 = sin^2(x) + 2sin(x)cos(x) + cos^2(x) = 1 + sin(2x) Substituting this back into the equation, we get: (1 + sin(2x))(1 - (1/2)sin(2x)) = 1 Expanding and simplifying, we get: 1 - (1/2)sin^2(2x) = 1 sin^2(2x) = 0 Taking the square root of both sides, we get: sin(2x) = 0 This means that either 2x = kπ (where k is an integer) or x = (kπ)/2. Therefore, the solutions to the equation are: x = kπ/2 or x = kπ/4, where k is an integer.
@wyboo2019 Жыл бұрын
if you allow complex valued theta then you can have those solutions outside of the regular bounds
@user-xo1ty8dg9k3 жыл бұрын
Avant de répondre a la question / Où est la formule ?
@Caturiya3 жыл бұрын
Anstelle der Kubischen Formel. Wir nennen das kubische Polynom K(u). Es har nur eine reele Nullstelle, da K(0) = 4 ist, ist diese negativ. etc
@marioalejandrocaisaguanomu80053 жыл бұрын
A really interesting problem! We can also solve it using this identity: cos^5(x) + sin^5(x) = [cos(x) + sin(x)][1 - cos(x)sin(x) - cos^2(x)sin^2(x)]. We can use "u = cos(x) + sin(x)". After some substitutions we'll have this equation: u^5 - 5u + 4 = 0. If we undo the substitutions, we will have: sin(2x) = u^2 - 1. From the equation in terms of "u", we'll have two real solutions. We only use the "u = 1" solution because the another value of "u" makes the expression "u^2 - 1" greater than one (max(u^2 - 1) = 1). The identity that I used can be proved if we factorize "cos^5(x) + sin^5(x)" as "[cos(x) + sin(x)][cos^4(x) - cos^3(x)sin(x) + cos^2(x)sin^2(x) - cos(x)sin^3(x) + sin^4(x)]" and using another basic identities.
@kevinhermawan3693 жыл бұрын
This earth gonna be better if all lecturer like you
@SyberMath Жыл бұрын
Aww, thank you!!! 🧡🥰
@momohkaddri9413 жыл бұрын
it suffices to write sin^5x + cos^5x= sin^2x + cos^2x which is eq. to this sum of potives sin^2x(1- sin^3x) + cos^2x(1- cos^3x)=0 and then, deduce , the solutions.
@_wahahaha2 жыл бұрын
When u are obsessed with mathematics for 20mins u can even divide equations by zero ... 21:37
@SyberMath2 жыл бұрын
😜
@זאבגלברד3 жыл бұрын
Like you did in the (sinx)^0.5 + cosx = 0 you could say right at the begining that x is greater or equal 0 and x is less or equal pi/2 .
@SyberMath3 жыл бұрын
That's right!
@orenawaerenyeager Жыл бұрын
21:37 💀witnessed a very scary statement.
@SyberMath Жыл бұрын
Division by 0 should be allowed!!! 😜🤣
@orenawaerenyeager Жыл бұрын
@@SyberMath 😂
@mathematicsbeautyclinics76872 жыл бұрын
Nice mathematics. Kindly tell me the app or software i need to have to also enjoy calculating that way at home
@SyberMath Жыл бұрын
Thanks! Notability
@liyuan-chuanli84683 жыл бұрын
If |\sin x| < 1 and |\cos x| < 1, then sin^n(x) is strictly decreasing on n\ge 1. Similarly, sin^n(x) is strictly decreasing on n\ge 1. So, sin^2x + cos^2x = 1 implies that sin^5x + cos^5x < 1. Therefore sin^5x + cos^5x = 1 implies that either sin x = 0 or cos x = 0.
@CengTolga3 жыл бұрын
Nice video. Can you revisit this problem, but including complex numbers? I'm particularly interested in u₃=-1.6506
@SyberMath3 жыл бұрын
Thanks! Me no like complex numbers! 😁
@cdiesch70003 жыл бұрын
interesting solution i would have done with inequalities by this we could demonstrate for sin(x)^n+cos(x)^n=1 n> 2 and natural number, there are in ]-pi,pi]2 solutions 0 and pi/2 if n is odd and 4 solutions, -pi/2,0,pi/2,pi if n is even.
@SyberMath3 жыл бұрын
Wow! Pretty good!
@Kris-hz1ns3 жыл бұрын
At 21:38, you say the most blasphemous thing that can be said in Mathematics !! 😆 Other than this, the whole explanation was quite gripping!👍
@SyberMath3 жыл бұрын
I don't know what I was thinking!!! 🤣
@Kris-hz1ns3 жыл бұрын
@@SyberMath 🤣
@jpolanco20043 жыл бұрын
Cos(x)^5-Cos(x)^2+Sin(x)^5-Sin(x)^2=0; from there, you can factor out 1-cos(x) and 1-sin(x), both of which give solutions when set to 0. The third factor can be reduced to 1+sin(x)cos(x)[sin(x)+cos(x)]=1+(1/sqrt(2))sin(2x)sin(x+pi/4), which is greater than 0. Hence x=0 and x=pi/2 are the only solutions, plus periodicity.
@asfahanansari46693 жыл бұрын
Instead of raising (Sinx + Cosx) to power 5 sin3x + Cos3x can be multiple by 1 e.g sin2x + cos2x
@piyushdaga3574 жыл бұрын
Great video ! But I, being a class 8 student, don't know how to solve for cubic and don't use radians in trigonometry...
@SyberMath4 жыл бұрын
I understand. Solving for the cubic is not that important. Converting radians and degrees is fairly easy.
@Qermaq4 жыл бұрын
@@SyberMath I never learned about radians until long after I was out of school. Had to learn them with Excel as it does all its trig with radians. I agree, they are no harder than converting temperature from C to F or vice versa. I hope anyone reading this realizes they're not hard, just different from degrees, and very often more useful.
@AtomicMathematics3 жыл бұрын
This is an interesting problem from Math Olympiad. Here the general solution is x=2n⫪, (4n+1)⫪/2. You can check this video for the solution kzbin.info/www/bejne/rZutfJuFj56SgZo
@Muslim_0113 жыл бұрын
The final cubed expression have -1 as a solution too Correction I'm wrong it does not have -1 as a solution
@WolfgangKais22 жыл бұрын
You mean that -1 + 2 - 3 + 4 = 0?
@Muslim_0112 жыл бұрын
@@WolfgangKais2 yes
@WolfgangKais22 жыл бұрын
@@Muslim_011 Well, I thought it was 2: -1 + 2 = 1 and -3 + 4 = 1, 1 + 1 = 2.
@Muslim_0112 жыл бұрын
@@WolfgangKais2 yes you're right when I first time said that I quickly thought it is 1-2-3+4 My bad. Thank you
@fanan26443 жыл бұрын
What is the cubic formula used in 19:50
@SyberMath Жыл бұрын
I used Wolfram Alpha 😜😂
@autf2_62 жыл бұрын
Thx teacher very good question please dowland trigonometry questions like this really beautiful question
@SyberMath2 жыл бұрын
Np. Thank you!
@VerSalieri3 жыл бұрын
you could use the fact that sinx+cosx=radical2 * sin(x+pi/4)... that way you won’t be adding in solutions by squaring. Of course, that requires using the formula asinx + bcosx = radical(a^2+b^2) * sin(x + arctan(b/a)). Side note: I hate that I wasn’t taught this formula in school... and by the time i discovered it exists, I no longer needed it. As always, good content my friend. Keep up the good work.
There is an easier solution for this problem. Let f(x) = sin(x)^5 + cos(x)^5. Then, f'(x) = 5 sin(x)^5 cos(x) - 5 cos(x)^4 sin(x). After a few simplifications you get f'(x) = 5 sin(x) cos(x) ( sin(x) - cos(x) ) (1 + sin(x)cos(x) ) . Setting f'(x) = 0, you fill find that the maximum of f(x) is 1, which only happens at x = 0 , and x = pi/2 (for 0
@ivornworrell3 жыл бұрын
How did u know to introduce u in the first place to aid solving?
@SyberMath3 жыл бұрын
Substitution is a good method and with trig expressions like this one, it works real well
@ivornworrell3 жыл бұрын
@@SyberMath Forgive my seeming lack of advanced Mathematical knowledge, but it seems to me that a trig problem of this nature requires previous knowledge of Trig. Identities AND knowledge in Algebraic Manipulation in order to be able to quickly "spot" which trig expression should be represented by an arbitrary letter (u in this case), to ultimately determine the solution/s.Salaam
@albertmcchan3 жыл бұрын
sin(x)^5 + cos(x)^5 = 1 → sin(x) ≥ 0 and cos(x) ≥ 0 → u = sin(x) + cos(x) > 0 → u^3 + 2*u^2 + 3*u + 4 > 4 ≠ 0 For real x, no need to solve the cubic.
@phandinhthanh22953 жыл бұрын
No, sin(x) and cos(x) can both be negative on [0; 2*pi).
@albertmcchan3 жыл бұрын
To get sin(x)^5 + cos(x)^5 = 1, LHS 2 terms must be non-negative, because both terms at most reached 1. Because 5th power is odd function, this implied sin(x) and cos(x) also non-negative.
@phandinhthanh22953 жыл бұрын
@@albertmcchan Ok, I've got it.
@veena72743 жыл бұрын
The problem can be done in a simpler manner if we consider u = sinx ^2 and the expression becomes x^3 + (1 -x)^3. It will work out to be an easy quadradic on x.
@SyberMath3 жыл бұрын
Are you sure? 🤔
@veena72743 жыл бұрын
@@SyberMath Sorry! I am such an idiot
@mcwulf252 жыл бұрын
I factored out (s+c) and reduced what's left to sc(sc-1) using the sum of squares= 1 a couple of times. Both factors must be 1 or both -1. After that it's easy substitutions.
@mcwulf252 жыл бұрын
Using this method it's clear that the only solutions are when s=0,c=1 and s=1,c=0. Two other solutions drop out but these have c or s > 1.
@davesimms88253 жыл бұрын
Holy crap that took a long time to solve something that was obvious just by looking.
Put x equals 45° ......then this expression gives value < 1 Hence given expression is false or invalid
@frankhofmann72633 жыл бұрын
I solved this equation by finding the maxima of f(x) = sin^5(x) + cos^5(x) between [0;2pi[ , f'(x) = 0 --> Maximum at x1 = 0 and x2 = pi/2, f(0) = 1 and f(pi/2) = 1. To my mind this is much easier.
@AtomicMathematics3 жыл бұрын
This is an interesting problem from Math Olympiad. Here the general solution is x=2n⫪, (4n+1)⫪/2. You can check this video for the solution kzbin.info/www/bejne/rZutfJuFj56SgZo
@caoainguyenang10073 жыл бұрын
This formal way is so complicated Sin^5
@marcosgoldin56233 жыл бұрын
Muy buen trabajo. Saludos desde Peru
@SyberMath3 жыл бұрын
Thank you! Greetings from the United States!
@emilaz54933 жыл бұрын
Math is not difficult but it is needs time to think for resolving every equation!
@SyberMath3 жыл бұрын
Math is not hard! You just need to memorize 1578 formulas! 🤣
@srividhyamoorthy7612 жыл бұрын
Please explain asum with cubic formula and explain the cubic formula in detail and all the forms of the eqn I am notable to find any video helping me
@godiswatching8110 Жыл бұрын
From relations 1=sin(x)^5+cos(x)^5
@MC_Transport Жыл бұрын
5:22 You forgot the negative sign in front of 3u So It will be (-3u-u³)/2 not (3u-u³)/2
@quanghuy89703 жыл бұрын
Thanks ad.
@tmacchant3 жыл бұрын
Squaring both side of sin(x)+cos(x)=1 gives extrareneaus solutions as mentioned in the end of part the video. Using relation of sin(x)+cos(x)=√2・sin(x+π/4)=1 does not give extrareneaus solutions.
@jarikosonen40793 жыл бұрын
If it can be "seen" that sin^5(x)+cos^5(x)
@SyberMath Жыл бұрын
Very nice! I'll probably redo this and use your idea 🤩
@neeruyadav99473 жыл бұрын
Put x=0degree then question become easy I think
@brentsoper345 Жыл бұрын
So I solved for an expression in terms of tanx. I had to allow the two real solutions of x which are 0 and pi/2. This gave a nifty quadratic where tanx ^5= b and b^2-1b +1 =0 I used the quadratic formula and de Moivres theorem to end up with two solutions 1 cis plus or minus pi/ 15 In the range allowed I found two complex solutions. For the angles pi/15 and 29pi/15
@brentsoper345 Жыл бұрын
tanx^5 gave two solutions from quadratic which are (1plus or minus root3)/2 nice little angles of 60 degrees on complex number diagram.
@Mathokgood3 жыл бұрын
Phương trình về các hàm số lượng giác. Giải bởi đặt ẩn phu. Cảm ơn.
@SyberMath3 жыл бұрын
Không vấn đề gì!
@RhythmofSumit3 жыл бұрын
What application is this? I mean any software is there? Can you tell me? And yes nice elaboration
@SyberMath3 жыл бұрын
Notability
@bichvanngoc31503 жыл бұрын
Sin ^5x 《 sin ^2 x Sin ^5 x + cos^5 x 《 sin^2 x + cos^2 x =1
@PATILGameking3 жыл бұрын
Just took 2 secs to solve the problem. Here take x=90 degrees or pi/2
@danielalvear34063 жыл бұрын
Lo resolví en menos de un minuto recordando q con ciertos ángulos una función es cero y la otra es uno para el mismo valor del ángulo Por lo tanto obtuve como resultado 0, 90 y 360
@ku6r1ck3 жыл бұрын
actually, all the point of (cost, sint) lies on unit circile x^2+y^2 = 1, and it implies that all solutions of equation cos^n(x) + sin^n(x) = 1 also must lie on the trivial vertexes, (1,0) and (0, 1).
@surendraraju57543 жыл бұрын
can't we let cos^2(x) = a. This implies sin^2(x) = 1-a. So, we have a^3+(1-a)^3 =1. Solving this gives a=0 or a=1 which implies cos^(2)x=1 or 0. So, x= 0 or pi/2.
@NurmemetAbliz3 жыл бұрын
This solution is incorrect . Here is why: x = 0 -> sinx = 0 -> (0)^5 + 1^5 ; x = pi/2 -> cosx = 0 -> 1^5 + 0^5; And 0^5 has no meaning . It should not be permitted in the equation .
@malabikasaha24526 ай бұрын
Solution using trigonometric identities is much shorter and quite easy-half page.
@mustafaerenguzel Жыл бұрын
Vay be, harikaydı. Teşekkür ederiz. 🙏💐 Bu arada Türk müsünüz? Selamlar, sevgiler :)
@SyberMath Жыл бұрын
Rica ederim. Ben de teşekkür ediyorum. Saolun, varolun! 🥰
@jcfos62943 жыл бұрын
L2 or L3 or M1 or M2.... In LMD in university ?
@ManjulaMathew-wb3zn11 ай бұрын
Once you knew the sum of 3rd powers you could have simply multiplied by the sum of squares to get the sum of fifth powers. It avoids a lot of simplifications to end up with the same equation.
@SyberMath11 ай бұрын
I agree
@rsri26123 жыл бұрын
Sin and cos have a phase difference of 90. Each with max value of 1. So the only solution is multiples of 90. However, it's nice to find a hard arithmetic proof.
@AtomicMathematics3 жыл бұрын
This is an interesting problem from Math Olympiad. Here the general solution is x=2n⫪, (4n+1)⫪/2. You can check this video for the solution kzbin.info/www/bejne/rZutfJuFj56SgZo
@AtomicMathematics3 жыл бұрын
Thank you sharing this nice problem. There is an tricky method to solve this question. Here the general solution is x=2n⫪, (4n+1)⫪/2.