A Rare Quintic Trigonometric Equation | sin^5x+cos^5x=1

  Рет қаралды 422,415

SyberMath

SyberMath

Күн бұрын

Пікірлер: 488
@syberrus
@syberrus 3 жыл бұрын
There is a much easier way. Given that sin^2 + cos^2 = 1, and 0
@SyberMath
@SyberMath 3 жыл бұрын
Cool!
@playomar5106
@playomar5106 2 жыл бұрын
Wow.
@SanctBlack
@SanctBlack 2 жыл бұрын
On 10th second I though about the same solution when imagine picture of c^5+s^5
@garvellokenxvi
@garvellokenxvi Жыл бұрын
0
@RigoVids
@RigoVids Жыл бұрын
The only thing to note which maybe falsely concluded from this explaination is the range of cos^5(x). The range or codomain of the function is -1
@SyberMath
@SyberMath 4 жыл бұрын
I don't think this problem has been solved and published on the internet before. Correct me if I'm wrong. I'm kind of surprised why it wasn't because it is not a super original idea. Anyone can come up with an equation like this. The fun part was to test if one equation would imply the other. I knew that one way implication worked but was not sure about the if-and-only-if scenario! Generally quintics are not solvable. (Isn't that sad?) Well, I think they are awesome! Any thoughts? Plz share down below...
@yogamulyadi9183
@yogamulyadi9183 3 жыл бұрын
I ever seen this on your Twitter.., And thanks to that, I learned several things...
@serands1840
@serands1840 4 жыл бұрын
S² + C² = 1. S^5 = S² iff S = 0 or 1. Idem for C. Otherwise S^5 < S² and C^5 < C². (S and C between -1 and 1) Thus S^5 + C^5 always < 1. Thus the only solutions are for (S,C)=(0,1) or (1,0)… i.e. 0 and pi/2 mod 2pi…
@SyberMath
@SyberMath 4 жыл бұрын
Good thinking!
@BCS-IshtiyakAhmadKhan
@BCS-IshtiyakAhmadKhan 4 жыл бұрын
I also did the same way
@davidseed2939
@davidseed2939 3 жыл бұрын
This method is used on youtube for C^100+S^100=1 as a competition question
@dustinbachstein3729
@dustinbachstein3729 3 жыл бұрын
Yeah, this video could have been made 22 minutes shorter xD
@TJStellmach
@TJStellmach 3 жыл бұрын
S^5+C^5
@hosseinmohammadi2800
@hosseinmohammadi2800 3 жыл бұрын
The good point about your way is that we can find the imaginary answers easier. I liked it
@kingbeauregard
@kingbeauregard 3 жыл бұрын
I took the derivative of the function to see where the extrema were, and found out that the maxima were at x = 0 or pi/2, which also happened to be where the function equals 1.
@SyberMath
@SyberMath 3 жыл бұрын
Nice!
@VSN1001
@VSN1001 3 жыл бұрын
I did the same and found out that there are infinity many sol
@telnobynoyator_6183
@telnobynoyator_6183 3 жыл бұрын
@@VSN1001 yeah bc cos(x + 2pi) = cos(x) and so on
@bilal42nga47
@bilal42nga47 3 жыл бұрын
.
@cheesefrogsnail
@cheesefrogsnail 3 жыл бұрын
Yes I did the same, there is another local maximum in 5PI/4 but it is negative
@bkclaud2135
@bkclaud2135 3 жыл бұрын
Thinking out of the box👏🏾. You literally had to come up with another equation and solve by substitution with the original problem. Wow ok
@SyberMath
@SyberMath 3 жыл бұрын
Thanks! 😊
@marklevin3236
@marklevin3236 3 жыл бұрын
Much simpler than that for any x sin^5(x)
@phandinhthanh2295
@phandinhthanh2295 3 жыл бұрын
I don't really get it. Could u, please, elaborate?
@italixgaming915
@italixgaming915 3 жыл бұрын
@@phandinhthanh2295 Easier to see in my solution: cos^5(x)+sin^5(x)=cos²(x).cos^3(x)+sin²(x).sin^3(x). 1=cos²(x)+sin²(x). Then I can write your equation under the form: cos²(x).cos^3(x)+sin²(x).sin^3(x)=cos²(x)+sin²(x) cos²(x).[cos^3(x)-1]+sin²(x).[sin^3(x)-1]=0 But cos^3(x)-1
@luismuller6505
@luismuller6505 2 жыл бұрын
21:35 "If you divide both sides by 0" is the best thing in the derivation of the answers. 😂
@SyberMath
@SyberMath 2 жыл бұрын
😁
@alax155
@alax155 3 жыл бұрын
21:37 "And if you divide both sides by 0". At first, I was like "Wait, whaaaaat", but then I saw you meant "by 2" xD
@benvickers8821
@benvickers8821 4 жыл бұрын
What a fantastic explanation of the solution to this problem. Love your videos!!!
@SyberMath
@SyberMath 4 жыл бұрын
Glad you like them!
@avrahambercovich667
@avrahambercovich667 3 жыл бұрын
@@SyberMath אני חושב אני אוהב א אני את זה אבל אמא א
@fm7490
@fm7490 3 жыл бұрын
I solved for tan(x/2) For substitution: cosx= (1-t^2)/(1+t^2) Sinx=2t/(1-t^2) Where t=tan(x/2) Then find t, then x/2, then x
@SyberMath
@SyberMath 3 жыл бұрын
Interesting
@AtomicMathematics
@AtomicMathematics 3 жыл бұрын
This is an interesting problem from Math Olympiad. Here the general solution is x=2n⫪, (4n+1)⫪/2. You can check this video for the solution kzbin.info/www/bejne/rZutfJuFj56SgZo
@vascomanteigas9433
@vascomanteigas9433 3 жыл бұрын
If you apply the Weierstrass substitution: sin(x)=2*t/(1+t^2) and cos(x)=(1-t^2)/(1+t^2). It will get a 10th degree polynomial. Each Root are then derived from x=2*arctan(t)+2*pi*n.
@SyberMath
@SyberMath 3 жыл бұрын
Wow!
@זאבגלברד
@זאבגלברד 3 жыл бұрын
To solve sinx + cosx = 1 there is a known technic to write it as sinx + tg45 cosx =1 , then multiply both sides by cos45. You get sin(x+45)=cos45 ...
@SyberMath
@SyberMath 3 жыл бұрын
That's a good one!
@akshaybagaria4941
@akshaybagaria4941 3 жыл бұрын
Solving this with inequality x^2>x^5 when x
@meowmeow-yq9xt
@meowmeow-yq9xt 3 жыл бұрын
Thanks I like this problem You guys are one of my hope that i will learn new and it needed from the beginning but my country education system doesn't fit in me. I can't even do something . But when I got my phone I realized that I shouldn't misuse of this device then step by step I found you and others who teaches free in YT at first I searched for graphical dynamic , optics , mechanics and other physic related then your one video came as recommendation I watched and I liked the way you teach and I can clearly understand your accent then it made me to subscribe your channel . Thanks for the videos
@זאבגלברד
@זאבגלברד 3 жыл бұрын
I enjoy your math telent. Thank you !
@SyberMath
@SyberMath 3 жыл бұрын
You are welcome! Thank you!
@sekaibelle
@sekaibelle 4 жыл бұрын
"Hello everyone" :)
@SyberMath
@SyberMath 4 жыл бұрын
Seeing this comment again after 2 months! 😁
@tonywong8677
@tonywong8677 3 жыл бұрын
Solved by plotting graph. The zeros of the function are at 0 and n pi/2. Hence, we can find out if there is any other solutions by plotting the graph of the corresponding function.
@AtomicMathematics
@AtomicMathematics 3 жыл бұрын
This is an interesting problem from Math Olympiad. Here the general solution is x=2n⫪, (4n+1)⫪/2. You can check this video for the solution kzbin.info/www/bejne/rZutfJuFj56SgZo
@Mosux2007
@Mosux2007 Жыл бұрын
The quintic can also be factored using synthetic division. May be easier.
@krisbrandenberger544
@krisbrandenberger544 3 жыл бұрын
On the one part, he said "Divide by 0", but meant "Divide by 2."
@hellohabibi1
@hellohabibi1 Жыл бұрын
21:36 "And If you divide both sides by 0"😅
@eliasmazhukin2009
@eliasmazhukin2009 3 жыл бұрын
In Russia, we call "sin^2 (x) + cos^2 (x) = 1" the Fundamental Identity of Trigonometry (основное тригонометрическое тождество)
@AtomicMathematics
@AtomicMathematics 3 жыл бұрын
This is an interesting problem from Math Olympiad. Here the general solution is x=2n⫪, (4n+1)⫪/2. You can check this video for the solution kzbin.info/www/bejne/rZutfJuFj56SgZo
@peterwan9076
@peterwan9076 2 жыл бұрын
@@AtomicMathematics I watch your solution. I appreciate the part where you figured out S^2(1 - S^3) + C^2(1-C^3) = 0 => S^2(1 - S^3)=0 and C^2(1-C^3) = 0. Genius. After that, it is straightforward.
@omsingh7683
@omsingh7683 Жыл бұрын
As sine and cosine function are the x coordinate and y coordinate of an arbitrary point on the unit circle centre at the origin therefore sin^2x>=sin^5x and cos^2x>= cos^5x now adding these two inequalities we get sin^5x+cos^5x
@dneary
@dneary 3 жыл бұрын
For the last bit, you can use the "trick" of multiplying acorss by 1/sqrt(2): sin x cos pi/4 + cos x sin pi/4 = sin(x+pi/4) = 1/sqrt(2) implies x+pi/4 = pi/4 or 3pi/4, x=0 or pi/2
@vijaysrini27
@vijaysrini27 Жыл бұрын
How did you get the cubic equation solved? Cubic equation direct problem hasn't been taught in either our school or college till date, and is still a mystery to most people, even in engineering!!!
@SyberMath
@SyberMath Жыл бұрын
There's a cubic formula. I used that method many times
@shubhamjha6418
@shubhamjha6418 2 жыл бұрын
from which book this question had been taken?
@SyberMath
@SyberMath Жыл бұрын
I don't think it was from a book. I thought of it myself
@salloom1949
@salloom1949 Жыл бұрын
I followed your methodology diligently and I understood every step along the way. Thoroughly enjoyed your explanation. But you left me dizzy and with headache. Thank you for a wonderful procedure.
@SyberMath
@SyberMath Жыл бұрын
Excellent!
@Jono98806
@Jono98806 2 жыл бұрын
Regarding that mistake in the end, you can write sin x + cos x = sqrt(2)*(1/sqrt(2) sin x + 1/sqrt(2) cos x) = sqrt(2)*(cos(pi/4) sin x + sin(pi/4) cos x) = sqrt(2) sin(x + pi/4). Therefore, sin x + cos x = 1 implies sqrt(2) sin(x + pi/4) = 1, where dividing both sides sqrt(2) gives sin(x + pi/4) = 1/sqrt(2). Therefore, x + pi/4 = pi/4 or x + pi/4 = (3 pi)/4 and solving for x gives x = 0 or x = pi/2.
@grzegorzkondracki4630
@grzegorzkondracki4630 3 жыл бұрын
Solution like an experience during climbing on K2 in one shoe, walking backward. I can admire, but Serands and some others solved this very smart and simply.
@prabhakarbk4322
@prabhakarbk4322 3 жыл бұрын
Too good an explanation. I enjoyed the way it is solved
@SyberMath
@SyberMath 3 жыл бұрын
Thanks a lot 😊
@AtomicMathematics
@AtomicMathematics 3 жыл бұрын
This is an interesting problem from Math Olympiad. Here the general solution is x=2n⫪, (4n+1)⫪/2. You can check this video for the solution kzbin.info/www/bejne/rZutfJuFj56SgZo
@miloradtomic
@miloradtomic 2 жыл бұрын
Beautiful method, dear friend. Best regards from Serbia
@SyberMath
@SyberMath 2 жыл бұрын
Many thanks! 🧡
@ostdog9385
@ostdog9385 4 жыл бұрын
Very good!!
@SyberMath
@SyberMath 4 жыл бұрын
Thank you!
@MayankSharma-jz9lc
@MayankSharma-jz9lc 3 жыл бұрын
I had this question for my test and I am surprised how utube recommended this to me
@SyberMath
@SyberMath Жыл бұрын
We are being tracked! 😜😂
@jensknudsen4222
@jensknudsen4222 3 жыл бұрын
So, all that work to show that the two solutions you can guess up front by plugging in a few points of the compass are in fact the only two solutions (mod 2pi). Isn't that just math in a nutshell?
@tylerduncan5908
@tylerduncan5908 3 жыл бұрын
Yes but the difference is that he said "i will find out for sure" not "I'm gonna guess and hope those are the only 2 solutions
@dmitryweinstein315
@dmitryweinstein315 3 жыл бұрын
instead of solving the cubic equation exactly, you could have analysed the lines u^5 and 5u-4 and realised that they only have two points in common, u=1 (where the tangents of the two lines equal i.e. no other positive u) and a negative u which is less than -sqrt(2) because at u=-sqrt(2) the line u^5 is still higher than the line 5u-4
@huytrandang277
@huytrandang277 3 жыл бұрын
This, for some reason, is actually entertaining to watch.
@SyberMath
@SyberMath 3 жыл бұрын
Glad to hear that!
@MrArcan10
@MrArcan10 3 жыл бұрын
where you have got u3 from? (this complicated value with cubic roots)
@mikesteele5935
@mikesteele5935 Жыл бұрын
This follows almost immediately from the Cauchy Schwarz inequaliity (if we restrict attention to real x, which seems to have been implicit).
@muhandiz6585
@muhandiz6585 3 жыл бұрын
21:37 if you divide both side by 2* you said 0 which is was shocking. interesting solution refreshed the arithmetical part of my brain.
@ezzatabdo5027
@ezzatabdo5027 Жыл бұрын
Thanks for your nice work.
@SyberMath
@SyberMath Жыл бұрын
Thank you too!
@think_logically_
@think_logically_ 2 жыл бұрын
sin⁵x ≤ sin²x, cos⁵ x ≤ cos²x (this also covers negative values of sine and cosine), consequently sin⁵ x+ cos⁵ x ≤ sin²x + cos²x = 1. Therefore the equality holds if and only of both inequalities turn into equalities. Thus we get sin⁵x = sin²x, cos⁵x = cos²x , so sine or cosine must be either 0 or 1. Since sine and cosine cannot be both 0, or both 1, one of them must be 1, and another must be zero.
@宇佐見英晴
@宇佐見英晴 Жыл бұрын
We can use the trigonometric identity: sin^2(x) + cos^2(x) = 1 to rewrite the equation as: (sin^2(x) + cos^2(x))(sin^3(x) + cos^3(x)) = 1 Expanding the second factor using the identity: a^3 + b^3 = (a + b)(a^2 - ab + b^2) with a = sin(x) and b = cos(x), we get: (sin^2(x) + cos^2(x))(sin(x) + cos(x))(sin^2(x) - sin(x)cos(x) + cos^2(x)) = 1 Using the identity: sin(x)cos(x) = (1/2)sin(2x) we can simplify the third factor to: sin^2(x) - sin(x)cos(x) + cos^2(x) = sin^2(x) - (1/2)sin(2x) + cos^2(x) = 1 - (1/2)sin(2x) Substituting this back into the equation, we get: (sin(x) + cos(x))(1 - (1/2)sin(2x)) = 1 Expanding the first factor using the identity: a+b)^2 = a^2 + 2ab + b^2 with a = sin(x) and b = cos(x), we get: (sin(x) + cos(x))^2 = sin^2(x) + 2sin(x)cos(x) + cos^2(x) = 1 + sin(2x) Substituting this back into the equation, we get: (1 + sin(2x))(1 - (1/2)sin(2x)) = 1 Expanding and simplifying, we get: 1 - (1/2)sin^2(2x) = 1 sin^2(2x) = 0 Taking the square root of both sides, we get: sin(2x) = 0 This means that either 2x = kπ (where k is an integer) or x = (kπ)/2. Therefore, the solutions to the equation are: x = kπ/2 or x = kπ/4, where k is an integer.
@wyboo2019
@wyboo2019 Жыл бұрын
if you allow complex valued theta then you can have those solutions outside of the regular bounds
@user-xo1ty8dg9k
@user-xo1ty8dg9k 3 жыл бұрын
Avant de répondre a la question / Où est la formule ?
@Caturiya
@Caturiya 3 жыл бұрын
Anstelle der Kubischen Formel. Wir nennen das kubische Polynom K(u). Es har nur eine reele Nullstelle, da K(0) = 4 ist, ist diese negativ. etc
@marioalejandrocaisaguanomu8005
@marioalejandrocaisaguanomu8005 3 жыл бұрын
A really interesting problem! We can also solve it using this identity: cos^5⁡(x) + sin^5⁡(x) = [cos⁡(x) + sin⁡(x)][1 - cos⁡(x)sin⁡(x) - cos^2⁡(x)sin^2⁡(x)]. We can use "u = cos⁡(x) + sin⁡(x)". After some substitutions we'll have this equation: u^5 - 5u + 4 = 0. If we undo the substitutions, we will have: sin⁡(2x) = u^2 - 1. From the equation in terms of "u", we'll have two real solutions. We only use the "u = 1" solution because the another value of "u" makes the expression "u^2 - 1" greater than one (max(u^2 - 1) = 1). The identity that I used can be proved if we factorize "cos^5⁡(x) + sin^5⁡(x)" as "[cos⁡(x) + sin⁡(x)][cos^4(x) - cos^3(x)sin(x) + cos^2(x)sin^2⁡(x) - cos(x)sin^3(x) + sin^4(x)]" and using another basic identities.
@kevinhermawan369
@kevinhermawan369 3 жыл бұрын
This earth gonna be better if all lecturer like you
@SyberMath
@SyberMath Жыл бұрын
Aww, thank you!!! 🧡🥰
@momohkaddri941
@momohkaddri941 3 жыл бұрын
it suffices to write sin^5x + cos^5x= sin^2x + cos^2x which is eq. to this sum of potives sin^2x(1- sin^3x) + cos^2x(1- cos^3x)=0 and then, deduce , the solutions.
@_wahahaha
@_wahahaha 2 жыл бұрын
When u are obsessed with mathematics for 20mins u can even divide equations by zero ... 21:37
@SyberMath
@SyberMath 2 жыл бұрын
😜
@זאבגלברד
@זאבגלברד 3 жыл бұрын
Like you did in the (sinx)^0.5 + cosx = 0 you could say right at the begining that x is greater or equal 0 and x is less or equal pi/2 .
@SyberMath
@SyberMath 3 жыл бұрын
That's right!
@orenawaerenyeager
@orenawaerenyeager Жыл бұрын
21:37 💀witnessed a very scary statement.
@SyberMath
@SyberMath Жыл бұрын
Division by 0 should be allowed!!! 😜🤣
@orenawaerenyeager
@orenawaerenyeager Жыл бұрын
@@SyberMath 😂
@mathematicsbeautyclinics7687
@mathematicsbeautyclinics7687 2 жыл бұрын
Nice mathematics. Kindly tell me the app or software i need to have to also enjoy calculating that way at home
@SyberMath
@SyberMath Жыл бұрын
Thanks! Notability
@liyuan-chuanli8468
@liyuan-chuanli8468 3 жыл бұрын
If |\sin x| < 1 and |\cos x| < 1, then sin^n(x) is strictly decreasing on n\ge 1. Similarly, sin^n(x) is strictly decreasing on n\ge 1. So, sin^2x + cos^2x = 1 implies that sin^5x + cos^5x < 1. Therefore sin^5x + cos^5x = 1 implies that either sin x = 0 or cos x = 0.
@CengTolga
@CengTolga 3 жыл бұрын
Nice video. Can you revisit this problem, but including complex numbers? I'm particularly interested in u₃=-1.6506
@SyberMath
@SyberMath 3 жыл бұрын
Thanks! Me no like complex numbers! 😁
@cdiesch7000
@cdiesch7000 3 жыл бұрын
interesting solution i would have done with inequalities by this we could demonstrate for sin(x)^n+cos(x)^n=1 n> 2 and natural number, there are in ]-pi,pi]2 solutions 0 and pi/2 if n is odd and 4 solutions, -pi/2,0,pi/2,pi if n is even.
@SyberMath
@SyberMath 3 жыл бұрын
Wow! Pretty good!
@Kris-hz1ns
@Kris-hz1ns 3 жыл бұрын
At 21:38, you say the most blasphemous thing that can be said in Mathematics !! 😆 Other than this, the whole explanation was quite gripping!👍
@SyberMath
@SyberMath 3 жыл бұрын
I don't know what I was thinking!!! 🤣
@Kris-hz1ns
@Kris-hz1ns 3 жыл бұрын
@@SyberMath 🤣
@jpolanco2004
@jpolanco2004 3 жыл бұрын
Cos(x)^5-Cos(x)^2+Sin(x)^5-Sin(x)^2=0; from there, you can factor out 1-cos(x) and 1-sin(x), both of which give solutions when set to 0. The third factor can be reduced to 1+sin(x)cos(x)[sin(x)+cos(x)]=1+(1/sqrt(2))sin(2x)sin(x+pi/4), which is greater than 0. Hence x=0 and x=pi/2 are the only solutions, plus periodicity.
@asfahanansari4669
@asfahanansari4669 3 жыл бұрын
Instead of raising (Sinx + Cosx) to power 5 sin3x + Cos3x can be multiple by 1 e.g sin2x + cos2x
@piyushdaga357
@piyushdaga357 4 жыл бұрын
Great video ! But I, being a class 8 student, don't know how to solve for cubic and don't use radians in trigonometry...
@SyberMath
@SyberMath 4 жыл бұрын
I understand. Solving for the cubic is not that important. Converting radians and degrees is fairly easy.
@Qermaq
@Qermaq 4 жыл бұрын
@@SyberMath I never learned about radians until long after I was out of school. Had to learn them with Excel as it does all its trig with radians. I agree, they are no harder than converting temperature from C to F or vice versa. I hope anyone reading this realizes they're not hard, just different from degrees, and very often more useful.
@AtomicMathematics
@AtomicMathematics 3 жыл бұрын
This is an interesting problem from Math Olympiad. Here the general solution is x=2n⫪, (4n+1)⫪/2. You can check this video for the solution kzbin.info/www/bejne/rZutfJuFj56SgZo
@Muslim_011
@Muslim_011 3 жыл бұрын
The final cubed expression have -1 as a solution too Correction I'm wrong it does not have -1 as a solution
@WolfgangKais2
@WolfgangKais2 2 жыл бұрын
You mean that -1 + 2 - 3 + 4 = 0?
@Muslim_011
@Muslim_011 2 жыл бұрын
@@WolfgangKais2 yes
@WolfgangKais2
@WolfgangKais2 2 жыл бұрын
@@Muslim_011 Well, I thought it was 2: -1 + 2 = 1 and -3 + 4 = 1, 1 + 1 = 2.
@Muslim_011
@Muslim_011 2 жыл бұрын
@@WolfgangKais2 yes you're right when I first time said that I quickly thought it is 1-2-3+4 My bad. Thank you
@fanan2644
@fanan2644 3 жыл бұрын
What is the cubic formula used in 19:50
@SyberMath
@SyberMath Жыл бұрын
I used Wolfram Alpha 😜😂
@autf2_6
@autf2_6 2 жыл бұрын
Thx teacher very good question please dowland trigonometry questions like this really beautiful question
@SyberMath
@SyberMath 2 жыл бұрын
Np. Thank you!
@VerSalieri
@VerSalieri 3 жыл бұрын
you could use the fact that sinx+cosx=radical2 * sin(x+pi/4)... that way you won’t be adding in solutions by squaring. Of course, that requires using the formula asinx + bcosx = radical(a^2+b^2) * sin(x + arctan(b/a)). Side note: I hate that I wasn’t taught this formula in school... and by the time i discovered it exists, I no longer needed it. As always, good content my friend. Keep up the good work.
@SyberMath
@SyberMath 3 жыл бұрын
Thank you, my friend! 💖
@akkyiofdolphin
@akkyiofdolphin Жыл бұрын
とはいえ、日本ではこの「回りくどく大変な」方法を遂行する力は養われていないように思います そのいみでとても教育的なビデオでした
@SyberMath
@SyberMath Жыл бұрын
ありがとう!
@rajakumar9377
@rajakumar9377 3 жыл бұрын
What value of x, which satisfy this equation ??
@AmooBaktash
@AmooBaktash 3 жыл бұрын
There is an easier solution for this problem. Let f(x) = sin(x)^5 + cos(x)^5. Then, f'(x) = 5 sin(x)^5 cos(x) - 5 cos(x)^4 sin(x). After a few simplifications you get f'(x) = 5 sin(x) cos(x) ( sin(x) - cos(x) ) (1 + sin(x)cos(x) ) . Setting f'(x) = 0, you fill find that the maximum of f(x) is 1, which only happens at x = 0 , and x = pi/2 (for 0
@ivornworrell
@ivornworrell 3 жыл бұрын
How did u know to introduce u in the first place to aid solving?
@SyberMath
@SyberMath 3 жыл бұрын
Substitution is a good method and with trig expressions like this one, it works real well
@ivornworrell
@ivornworrell 3 жыл бұрын
@@SyberMath Forgive my seeming lack of advanced Mathematical knowledge, but it seems to me that a trig problem of this nature requires previous knowledge of Trig. Identities AND knowledge in Algebraic Manipulation in order to be able to quickly "spot" which trig expression should be represented by an arbitrary letter (u in this case), to ultimately determine the solution/s.Salaam
@albertmcchan
@albertmcchan 3 жыл бұрын
sin(x)^5 + cos(x)^5 = 1 → sin(x) ≥ 0 and cos(x) ≥ 0 → u = sin(x) + cos(x) > 0 → u^3 + 2*u^2 + 3*u + 4 > 4 ≠ 0 For real x, no need to solve the cubic.
@phandinhthanh2295
@phandinhthanh2295 3 жыл бұрын
No, sin(x) and cos(x) can both be negative on [0; 2*pi).
@albertmcchan
@albertmcchan 3 жыл бұрын
To get sin(x)^5 + cos(x)^5 = 1, LHS 2 terms must be non-negative, because both terms at most reached 1. Because 5th power is odd function, this implied sin(x) and cos(x) also non-negative.
@phandinhthanh2295
@phandinhthanh2295 3 жыл бұрын
@@albertmcchan Ok, I've got it.
@veena7274
@veena7274 3 жыл бұрын
The problem can be done in a simpler manner if we consider u = sinx ^2 and the expression becomes x^3 + (1 -x)^3. It will work out to be an easy quadradic on x.
@SyberMath
@SyberMath 3 жыл бұрын
Are you sure? 🤔
@veena7274
@veena7274 3 жыл бұрын
@@SyberMath Sorry! I am such an idiot
@mcwulf25
@mcwulf25 2 жыл бұрын
I factored out (s+c) and reduced what's left to sc(sc-1) using the sum of squares= 1 a couple of times. Both factors must be 1 or both -1. After that it's easy substitutions.
@mcwulf25
@mcwulf25 2 жыл бұрын
Using this method it's clear that the only solutions are when s=0,c=1 and s=1,c=0. Two other solutions drop out but these have c or s > 1.
@davesimms8825
@davesimms8825 3 жыл бұрын
Holy crap that took a long time to solve something that was obvious just by looking.
@SyberMath
@SyberMath Жыл бұрын
Hmm
@lequangvan6934
@lequangvan6934 3 жыл бұрын
6:00 sin^3x + cos^3x = (3u - u)/2 (Sin^3x +cos^3x)(sin^2x + cos^2x) = (3u - u)/2
@rajakumar9377
@rajakumar9377 3 жыл бұрын
Put x equals 45° ......then this expression gives value < 1 Hence given expression is false or invalid
@frankhofmann7263
@frankhofmann7263 3 жыл бұрын
I solved this equation by finding the maxima of f(x) = sin^5(x) + cos^5(x) between [0;2pi[ , f'(x) = 0 --> Maximum at x1 = 0 and x2 = pi/2, f(0) = 1 and f(pi/2) = 1. To my mind this is much easier.
@AtomicMathematics
@AtomicMathematics 3 жыл бұрын
This is an interesting problem from Math Olympiad. Here the general solution is x=2n⫪, (4n+1)⫪/2. You can check this video for the solution kzbin.info/www/bejne/rZutfJuFj56SgZo
@caoainguyenang1007
@caoainguyenang1007 3 жыл бұрын
This formal way is so complicated Sin^5
@marcosgoldin5623
@marcosgoldin5623 3 жыл бұрын
Muy buen trabajo. Saludos desde Peru
@SyberMath
@SyberMath 3 жыл бұрын
Thank you! Greetings from the United States!
@emilaz5493
@emilaz5493 3 жыл бұрын
Math is not difficult but it is needs time to think for resolving every equation!
@SyberMath
@SyberMath 3 жыл бұрын
Math is not hard! You just need to memorize 1578 formulas! 🤣
@srividhyamoorthy761
@srividhyamoorthy761 2 жыл бұрын
Please explain asum with cubic formula and explain the cubic formula in detail and all the forms of the eqn I am notable to find any video helping me
@godiswatching8110
@godiswatching8110 Жыл бұрын
From relations 1=sin(x)^5+cos(x)^5
@MC_Transport
@MC_Transport Жыл бұрын
5:22 You forgot the negative sign in front of 3u So It will be (-3u-u³)/2 not (3u-u³)/2
@quanghuy8970
@quanghuy8970 3 жыл бұрын
Thanks ad.
@tmacchant
@tmacchant 3 жыл бұрын
Squaring both side of sin(x)+cos(x)=1 gives extrareneaus solutions as mentioned in the end of part the video. Using relation of sin(x)+cos(x)=√2・sin(x+π/4)=1 does not give extrareneaus solutions.
@jarikosonen4079
@jarikosonen4079 3 жыл бұрын
If it can be "seen" that sin^5(x)+cos^5(x)
@SyberMath
@SyberMath Жыл бұрын
Very nice! I'll probably redo this and use your idea 🤩
@neeruyadav9947
@neeruyadav9947 3 жыл бұрын
Put x=0degree then question become easy I think
@brentsoper345
@brentsoper345 Жыл бұрын
So I solved for an expression in terms of tanx. I had to allow the two real solutions of x which are 0 and pi/2. This gave a nifty quadratic where tanx ^5= b and b^2-1b +1 =0 I used the quadratic formula and de Moivres theorem to end up with two solutions 1 cis plus or minus pi/ 15 In the range allowed I found two complex solutions. For the angles pi/15 and 29pi/15
@brentsoper345
@brentsoper345 Жыл бұрын
tanx^5 gave two solutions from quadratic which are (1plus or minus root3)/2 nice little angles of 60 degrees on complex number diagram.
@Mathokgood
@Mathokgood 3 жыл бұрын
Phương trình về các hàm số lượng giác. Giải bởi đặt ẩn phu. Cảm ơn.
@SyberMath
@SyberMath 3 жыл бұрын
Không vấn đề gì!
@RhythmofSumit
@RhythmofSumit 3 жыл бұрын
What application is this? I mean any software is there? Can you tell me? And yes nice elaboration
@SyberMath
@SyberMath 3 жыл бұрын
Notability
@bichvanngoc3150
@bichvanngoc3150 3 жыл бұрын
Sin ^5x 《 sin ^2 x Sin ^5 x + cos^5 x 《 sin^2 x + cos^2 x =1
@PATILGameking
@PATILGameking 3 жыл бұрын
Just took 2 secs to solve the problem. Here take x=90 degrees or pi/2
@danielalvear3406
@danielalvear3406 3 жыл бұрын
Lo resolví en menos de un minuto recordando q con ciertos ángulos una función es cero y la otra es uno para el mismo valor del ángulo Por lo tanto obtuve como resultado 0, 90 y 360
@ku6r1ck
@ku6r1ck 3 жыл бұрын
actually, all the point of (cost, sint) lies on unit circile x^2+y^2 = 1, and it implies that all solutions of equation cos^n(x) + sin^n(x) = 1 also must lie on the trivial vertexes, (1,0) and (0, 1).
@surendraraju5754
@surendraraju5754 3 жыл бұрын
can't we let cos^2(x) = a. This implies sin^2(x) = 1-a. So, we have a^3+(1-a)^3 =1. Solving this gives a=0 or a=1 which implies cos^(2)x=1 or 0. So, x= 0 or pi/2.
@NurmemetAbliz
@NurmemetAbliz 3 жыл бұрын
This solution is incorrect . Here is why: x = 0 -> sinx = 0 -> (0)^5 + 1^5 ; x = pi/2 -> cosx = 0 -> 1^5 + 0^5; And 0^5 has no meaning . It should not be permitted in the equation .
@malabikasaha2452
@malabikasaha2452 6 ай бұрын
Solution using trigonometric identities is much shorter and quite easy-half page.
@mustafaerenguzel
@mustafaerenguzel Жыл бұрын
Vay be, harikaydı. Teşekkür ederiz. 🙏💐 Bu arada Türk müsünüz? Selamlar, sevgiler :)
@SyberMath
@SyberMath Жыл бұрын
Rica ederim. Ben de teşekkür ediyorum. Saolun, varolun! 🥰
@jcfos6294
@jcfos6294 3 жыл бұрын
L2 or L3 or M1 or M2.... In LMD in university ?
@ManjulaMathew-wb3zn
@ManjulaMathew-wb3zn 11 ай бұрын
Once you knew the sum of 3rd powers you could have simply multiplied by the sum of squares to get the sum of fifth powers. It avoids a lot of simplifications to end up with the same equation.
@SyberMath
@SyberMath 11 ай бұрын
I agree
@rsri2612
@rsri2612 3 жыл бұрын
Sin and cos have a phase difference of 90. Each with max value of 1. So the only solution is multiples of 90. However, it's nice to find a hard arithmetic proof.
@AtomicMathematics
@AtomicMathematics 3 жыл бұрын
This is an interesting problem from Math Olympiad. Here the general solution is x=2n⫪, (4n+1)⫪/2. You can check this video for the solution kzbin.info/www/bejne/rZutfJuFj56SgZo
@AtomicMathematics
@AtomicMathematics 3 жыл бұрын
Thank you sharing this nice problem. There is an tricky method to solve this question. Here the general solution is x=2n⫪, (4n+1)⫪/2.
@SyberMath
@SyberMath Жыл бұрын
Np. Thanks
@peterbanh1364
@peterbanh1364 3 жыл бұрын
x=2nPi or x=(2n+1)Pi where n is any integer.
Solving an inverse trigonometric equation
7:37
SyberMath
Рет қаралды 11 М.
An Interesting Exponential Equation
9:22
SyberMath
Рет қаралды 1,2 М.
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН
Solving An Insanely Hard Problem For High School Students
7:27
MindYourDecisions
Рет қаралды 3,6 МЛН
A Rare Quintic Trigonometric Equation | (sinx)^5+(cosx)^5=1
22:46
SyberMath Shorts
Рет қаралды 1 М.
A Functional Equation from Putnam and Beyond
12:07
SyberMath
Рет қаралды 273 М.
An Interesting Homemade Equation
9:49
SyberMath
Рет қаралды 2,1 М.
I can solve any quintic equation!!
22:51
Michael Penn
Рет қаралды 56 М.
A Nice Exponential Equation
8:13
SyberMath
Рет қаралды 729
What does it feel like to invent math?
15:08
3Blue1Brown
Рет қаралды 4,2 МЛН
Solving a Non-standard Exponential Equation
7:28
SyberMath
Рет қаралды 508 М.