I did it basically the same way you did, but consider the sine sum.anglenformula sine of pi/2 plus theta equals sine pi/2costheta plus sine thetacospi/2 which simplifies to sine of pi/2 plus theta equals cosine theta and if both 0f these equal x..then inverse sine of x equals pi/2 PLUS theta..which means inverse sine of x equals pi/2 plus inverse cosine x because that3what theta by itself is..so you get that wheb you solve for pi/2 that inverse sine x MINUS inverse cosine x equals pi/2..isnt that curious??
@SyberMath4 жыл бұрын
Great ideas! You want to be careful with inverse sin and inverse cos, though. Since y=sinx and y=cosx are not one-to-one, they don't have inverses unless you restrict their domains.
@leif10754 жыл бұрын
@@SyberMath I'm not sure i know what you mean..but it is still true that sine of pi/2 plus theta equals cosine theta because of the law of sum of angles ofnsines remember?
@leif10754 жыл бұрын
@@SyberMath but inverse sine and cosine are always defined it's not like tan x that has an asymotote ..after all even if the answer is zero like cosine of pi/2 equals sero so inverse cosine of zero is pi/2 ..or you mean since the aues can o ly be between -1 and 1 of the inverse? But that still doesnt change the fsct that the relation is true for any angles according tonthe sum of sine angles formula
@SyberMath4 жыл бұрын
@@leif1075 This is what I mean: On the interval [0,pi] there are two angles whose sin is equal to the same thing. For example: sin(pi/6)=sin(5pi/6)=1/2. So sin inverse of 1/2 is not uniquely determined if you don't restrict the domain.
@leif10754 жыл бұрын
@@SyberMath ok so what i said is also correct then right..sine pi/2 plus theta equals cosine theta..thanks
@MikeB3542 Жыл бұрын
That pi-squared over 18 feels very Basel-y!
@lebker1342 Жыл бұрын
Guys wtf is this? |1/sin|>1 |1/cos|>1 (Pi^2)/18
@SatyanarayanaMudunuri Жыл бұрын
If arcsin x = A and arccos x = B then we have AB = pi^2/18 and A+B = pi/2. From here it is simple to solve. Your solution is far from elegant
@SyberMath Жыл бұрын
Thanks
@Kdd1604 жыл бұрын
😀 cooool
@SyberMath4 жыл бұрын
Thank you! 😀
@SyberMath4 жыл бұрын
Problem fixed. Re-recorded: kzbin.info/www/bejne/iorUno2IpJWaecU
@Kdd1604 жыл бұрын
@@SyberMath Thanks!
@SyberMath4 жыл бұрын
@@Kdd160 You're welcome! Have a good one!
@rex_yourbud Жыл бұрын
My way : Notice you can break pi²/18 = ( pi/a ) ( pi/b ) where ab = 18 Now 6x3 = 18 you get rhs as pi/3 times pi/6, which are complementary angles and super nice. First equate arc(sin) to pi/6 and then to pi/3 and arc(cos) will take care of itself since angles are complimentary. Boom the two solution : 1/sqrt(2) and sqrt(3)/2
@johncena-fy3mo4 жыл бұрын
I. Also got a very challenging problem can you please help me out?
@SyberMath4 жыл бұрын
I'm not sure if I will be able to help but feel free to send a tweet and mention me @SyberMath. If I cannot solve it, I will pose it on twitter and someone will probably figure it out!
@johncena-fy3mo4 жыл бұрын
@@SyberMath I could send u on instagram
@SyberMath4 жыл бұрын
Sure.
@SyberMath4 жыл бұрын
Problem fixed. Re-recorded: kzbin.info/www/bejne/iorUno2IpJWaecU