A Survey of Techniques for Maximizing LLM Performance

  Рет қаралды 195,255

OpenAI

OpenAI

Күн бұрын

Join us for a comprehensive survey of techniques designed to unlock the full potential of Language Model Models (LLMs). Explore strategies such as fine-tuning, RAG (Retrieval-Augmented Generation), and prompt engineering to maximize LLM performance.
Speakers:
John Allard
Engineering Lead, Fine-tuning Product Team at ‪@OpenAI‬
Colin Jarvis
Solutions, EMEA at ‪@OpenAI‬

Пікірлер
Prompt Engineering, RAG, and Fine-tuning: Benefits and When to Use
15:21
Building OpenAI o1 (Extended Cut)
22:14
OpenAI
Рет қаралды 246 М.
What type of pedestrian are you?😄 #tiktok #elsarca
00:28
Elsa Arca
Рет қаралды 33 МЛН
Из какого города смотришь? 😃
00:34
МЯТНАЯ ФАНТА
Рет қаралды 2,5 МЛН
МЕНЯ УКУСИЛ ПАУК #shorts
00:23
Паша Осадчий
Рет қаралды 5 МЛН
New Products: A Deep Dive
44:36
OpenAI
Рет қаралды 351 М.
Generative AI in a Nutshell - how to survive and thrive in the age of AI
17:57
OpenAI Embeddings and Vector Databases Crash Course
18:41
Adrian Twarog
Рет қаралды 500 М.
What's next for AI agentic workflows ft. Andrew Ng of AI Fund
13:40
Sequoia Capital
Рет қаралды 343 М.
The New Stack and Ops for AI
34:10
OpenAI
Рет қаралды 78 М.
How to Improve LLMs with RAG (Overview + Python Code)
21:41
Shaw Talebi
Рет қаралды 77 М.
RAG vs. Fine Tuning
8:57
IBM Technology
Рет қаралды 62 М.
4 Methods of Prompt Engineering
12:42
IBM Technology
Рет қаралды 160 М.
What type of pedestrian are you?😄 #tiktok #elsarca
00:28
Elsa Arca
Рет қаралды 33 МЛН