A Very Nice Geometry Problem | You should be able to solve this! | 2 Methods

  Рет қаралды 29,872

Math Booster

Math Booster

Күн бұрын

Пікірлер: 32
@SGuerra
@SGuerra Ай бұрын
Que questão bonita. Parabéns pela escolha. Eu a resolvi por um método diferente.
@jairoeveliogordillomarin5780
@jairoeveliogordillomarin5780 3 ай бұрын
En la figura corro el lado AD hasta que D coincida con E. Se me forma un triángulo rectángulo ECM, con ángulo recto en M y una hipotenusa igual a 6 y catetos: EM= 2X y CM= X.. Aplico teorema de Pitágoras: 6²= X²+(2X)² Entonces: X= 2.683 u, o X= 6÷√5 u.
@johnbrennan3372
@johnbrennan3372 4 ай бұрын
Triangles bqf and cqe are similar so 4/2= cq/bq. Then cq= 2x/3. The triangles qce and pde are similar so 4/1= (x+ed)/ed. so ed=x/3. Using triangle qec 4^2= (x+x/3)^2+ (2x\3)^2. Then 16= 20(x)^2 divided by 9. X=6/ sqroot 5.
@davidseed2939
@davidseed2939 3 ай бұрын
let s =sinθ c=cosθ measuring vertically 6s=x, horizontally 3c=x, 6c=2x 36ss=xx 36cc=4xx 36=5xx 6=¥5 * x ¥5 * 6=5x x=1.2¥5
@santiagoarosam430
@santiagoarosam430 4 ай бұрын
La pendiente de EF es constante→ PD=a→ distancia vertical entre Q y P =3a→ BQ=2a→ BC=a+3a+2a=6a→ 3²=(3a)²+(6a)²→ a²=1/5→ a=1/√5→ BC=6/√5 =X. Gracias y un saludo cordial.
@giuseppemalaguti435
@giuseppemalaguti435 4 ай бұрын
ED=a ..arccos(a+x)/4=arcsin((x-√(16-(a+x))^2)/2)=arccos(a/1)...x=6/√5...a=x/3=2/√5
@frankxu9675
@frankxu9675 3 ай бұрын
x^2 + (2x)^2 = (1+3+2)^2 5 x^2 = 6^2 x = 6 / sqrt(5)
@davidseed2939
@davidseed2939 3 ай бұрын
but you don’t say how you measure to get those equations
@harikatragadda
@harikatragadda 4 ай бұрын
Imagine a rectangle with a diagonal 6 and a Square of side X in it. Because of Similarity, the Left box and the Right box bases also add upto X. Hence the rectangle can be divided into two Square boxes of side X. Applying Pythagoras theorem, (2X)² +X²=6² X =6/√5
@Zollaho
@Zollaho 3 ай бұрын
What I did. 15 seconds mentally
@michaeldoerr5810
@michaeldoerr5810 4 ай бұрын
The answer was def 6[sqrt(5)/5]. Apparently the two methods involved two substitutions: a Pythagorean identity as well as substitution via HL poatulate and parrallel postulate. I actually calculated this quantity using my identical version. I hope that this means that I kind of got it!!! Also do you think it possible to COMBINE those two methods? Im planning doing that when I can!!!
@nexen1041
@nexen1041 4 ай бұрын
Move the entire diagonal section horizontally to the right until ED is ZERO. QF will be 3 and BF will be X. The new right triangle height will be X, base is 2X and hyp is 6 Finally, Solve for X using Pythagorean theorem
@michallesz2
@michallesz2 3 ай бұрын
ED + BF = x => x^2 + ( 2x )^2 = (1+2+3)^2 => x^2 + 4x^2 = 36 => 5x^2 =36 => x^2=36/5 = 7,2 x=V7,2 = 2,68328....
@bpark10001
@bpark10001 4 ай бұрын
There is no need for line PM. Extend line EC. Drop perpendicular from F to intersect EC extended at N. Triangles EDP, ECQ, & ENF are all similar, so ED/EC = 1/ 3. Given DC = X, ED = X/3. ED/EG = 1/2. CG = (2)(X/3) = (2/3)X. EG = x/3 + x + (2/3)X = 2X GF = BC = X. 6² = X² + (2X)². 5X² = 36. X² = 36/5. X = 6/√5.
@Irtsak
@Irtsak 3 ай бұрын
ED/EC=1/4. where is point G ?
@bpark10001
@bpark10001 3 ай бұрын
@@Irtsak Point G is out to the right (where point N is in the video). I wrote up & made point G, but determined later he had already had named the point N. So all the G's need to be edited to N's.
@Irtsak
@Irtsak 3 ай бұрын
​@@bpark10001Your solution is very clever. Allow me to rephrase your solution in order everyone to understand it. OP // QC // FN => ED/EP=DC/PQ=CN/QF (Thales ) => ED/1=x/3=CN/2 => ED=x/3 and CN=2x/3 EN=x/3+x+2x/3=2x and FN=x . Apply Pythagoras theorem in right triangle ENF => 4x²+x²=6² => x=(6√5)/5 Have a nice day.
@vaibhavsunak6746
@vaibhavsunak6746 3 ай бұрын
30/sqrt(61) is it also the answere
@Irtsak
@Irtsak 3 ай бұрын
Let PD=y, BQ=ω So QC=BC-BQ => *QC=x-ω* Now triangles EPD,BQF are similar => y/1=ω/2 => *ω=2y* (1) Also AQC,EPD are similar => QC/y=4/1 => QC=4y => x-ω=4y => x=4y+ω => x=4y+2y cause (1) => x=6y (2) Apply Pythagoras theorem in EPD => ED=√(1-y²) AD//BC => x/3=√(1-y²) / 1 => x=3·√(1-y²) (3) (2),(3) => 6y=3√(1-y²)=> 2y=√(1-y²) => 4y²=1-y² => y=1/√5 (2) => x=6/√5
@ДмитрийИвашкевич-я8т
@ДмитрийИвашкевич-я8т 4 ай бұрын
sinα=х/6 ; cosα=x/3 (sinα)^2+ (cosα)^2=1 x=6/√5
@himo3485
@himo3485 4 ай бұрын
3/(1+3+2)=3/6=1/2 x²+(x/2)²=3² 5x²/4=9 x²=36/5 x=6/√5
@quigonkenny
@quigonkenny 4 ай бұрын
Extend EC to M and draw MF perpendicular to EM so that ∆EMF is a right triangle. Draw QN, where N is the point on AD where QN is perpendicular to AD. As ∠PED = ∠QFB as alternate interior angles, and ∠EDP = ∠FBQ = 90°, ∆EDP and ∆FBQ are similar triangles. As QM is parallel to EC, ∆EDP and ∆QNP are also similar triangles for the same reason. And finally, as ∠EDP = ∠EMF = 90° and ∠E is common, ∆EDP and EMF are similar triangles. As EP + QF = PQ = 3 and ∆EDP, ∆QNP, and ∆FBQ are similar triangles, then ED+BF = QN = DC = x. As CM = BF, EM = ED+DC+CM = 2x. As ABCD is a square and MF is parallel to BC, MF = x as well. Triangle ∆EMF: MF² + EM² = FE² x² + (2x)² = 6² x² + 4x² = 36 x² = 36/5 x = 6/√5 = (6√5)/5 ≈ 2.683 units
@prakrit1280
@prakrit1280 3 ай бұрын
Happy Guru Purnima, Sir🫡😇 Thank you for your informative videos😊
@RealQinnMalloryu4
@RealQinnMalloryu4 4 ай бұрын
(1)^2 =1 (3)^2=9,(2)^2 = 4 {1+9+4}= 14 360°ABCD/14=2.164ABCD 2^1.10^10^8^8 2^1.2^52^52^32^3 1^1.1^12^11^11^1 21 (ABCD ➖ 2ABCD+1 )
@SidneiMV
@SidneiMV 3 ай бұрын
ED = y => BF = 2y (x + y)/4 = (x + 2y)/5 5(x + y) = 4(x + 2y) 5x + 5y = 4x + 8y x = 3y => y = x/3 EC = 4x/3 AF = 5x/3 AP² = 25 - 25x²/9 => AP = 5√(1 - x²/9) PD² = 1 - x²/9 => PD = √(1 - x²/9) AP + PD = 6√(1 - x²/9) = x 36(1 - x²/9) = x² 36 - 4x² = x² 5x² = 36 => *x = (6√5)/5*
@윤준서-g6f
@윤준서-g6f 4 ай бұрын
6/5×root(5)
@AmirgabYT2185
@AmirgabYT2185 4 ай бұрын
6√5/5≈2,36
@luborjakubec9212
@luborjakubec9212 3 ай бұрын
no 2,36 , but cca 2,683
@nexen1041
@nexen1041 4 ай бұрын
Thumbs up to those who solved it visually, without even the need to use calculator. Thiat is what i did 👍
@簡欽慧
@簡欽慧 18 күн бұрын
太雜啦
A Very Nice Geometry Problem | 2 Different Methods
13:40
Math Booster
Рет қаралды 8 М.
Many Students Failed To Solve This Geometry Problem
19:56
Math Booster
Рет қаралды 27 М.
Real Man relocate to Remote Controlled Car 👨🏻➡️🚙🕹️ #builderc
00:24
Trick-or-Treating in a Rush. Part 2
00:37
Daniel LaBelle
Рет қаралды 46 МЛН
When Cucumbers Meet PVC Pipe The Results Are Wild! 🤭
00:44
Crafty Buddy
Рет қаралды 45 МЛН
Trapped by the Machine, Saved by Kind Strangers! #shorts
00:21
Fabiosa Best Lifehacks
Рет қаралды 40 МЛН
Hungary Math Olympiad | A Very Nice Geometry Problem | 2 Methods
15:38
This is How You Solve The "Unsolvable" Math Problem
20:31
MyDailyMath
Рет қаралды 6 М.
Sudoku Tricks:  The X-Wing And How To Spot It
16:57
Cracking The Cryptic
Рет қаралды 1,4 МЛН
find the missing angle!!
10:34
Michael Penn
Рет қаралды 95 М.
The Hardest Exam Question | Only 6% of students solved it correctly
17:42
Higher Mathematics
Рет қаралды 225 М.
Canada Math Olympiad Problem | Best Math Olympiad Problems | Geometry
18:06
Real Man relocate to Remote Controlled Car 👨🏻➡️🚙🕹️ #builderc
00:24