To avoid such difficult calculation we can use concept of nth root of unity which says that if x^n=1 then x=e^(2πki/n) where k=0,1,2,3......(n-1) If you put k gretaer than that then roots will starts repeating and also we can simplify them in much nicer form by euler identity which says e^(ix)=cosx+isinx
@ronseymour49768 күн бұрын
Yes, this method is unintuitive and very long winded.
@YongHowChin7 күн бұрын
At a glance, x needs to be 1 to satisfy the equation,
@sairosulaiman9 сағат бұрын
√9=±3 and √8=±2√2....so there are complex roots too
@hassnaabraim63189 күн бұрын
this is not math. it's something else 😂😂
@grassytramtracks6 күн бұрын
Luckily for you this is a needlessly complicated method. Just use the nth roots of unity
@chrismcgowan39389 күн бұрын
x = 1 and very likley solutions with i .....
@vorpal229 күн бұрын
The only integer solution is 1, and the others are going to occur in pairs as complex numbers. Whenever you have x^n + .... and you're solving, since polynomials split completely over C, you will get n solutions. An even number of them will be complex, and the rest of them will be real.
@pot_kivach1608 күн бұрын
When i find something out of bound, i hit Thumb down button. And everything makes sense then.
@hangthuy4589 күн бұрын
X^5=1=1^5X=1
@vorpal229 күн бұрын
x = 1 is one solution. Polynomials split completely over C, so there are guaranteed to be five solutions, and since 5 is prime, they will all be unique, and four of them will be complex, occurring in two pairs.
@philippedelaveau5287 күн бұрын
Racine niéme de l’unité. Réponse immédiate sans calcul.
@christiaanvanhyfte18739 күн бұрын
Sorry. I will not comment.
@themieljadida44599 күн бұрын
Nul .... nul.
@sairosulaiman9 сағат бұрын
√9=±3 and √8=±2√2....so there are complex roots too
@sairosulaiman9 сағат бұрын
√9=±3 and √8=±2√2....so there are complex roots too
@sairosulaiman9 сағат бұрын
√9=±3 and √8=±2√2....so there are complex roots too