A viewer suggested dream.

  Рет қаралды 244,663

Michael Penn

Michael Penn

Күн бұрын

Пікірлер
@leickrobinson5186
@leickrobinson5186 3 жыл бұрын
An easier way to solve: dividing m+n=mn by either m or n, we see m|n and n|m, which means that m=n and so 2m=m^2 and thus m=n=2.
@NoisqueVoaProduction
@NoisqueVoaProduction 3 жыл бұрын
Why can you divide by m or n and still be sure everything will be a natural?
@leickrobinson5186
@leickrobinson5186 3 жыл бұрын
@@NoisqueVoaProduction We can rearrange the equation to get n=mn-m. If we divide by m, we see n/m = n-1. Since the rhs of the equation is an integer, the lhs must be as well, and so m|n (m divides n). Likewise, by symmetry, we get n|m as well.
@NoisqueVoaProduction
@NoisqueVoaProduction 3 жыл бұрын
@@leickrobinson5186 oh, yeah. That's actually really simple. 1\m is a sum of integers, therefore it is a integer. Cool
@secretperson8681
@secretperson8681 3 жыл бұрын
Thats so cool bud. thanks
@nickyhekster2974
@nickyhekster2974 3 жыл бұрын
Exactly what I thought!
@bprpfast
@bprpfast 3 жыл бұрын
If we allow complex numbers, then we can have (-1)*i=i^(-1) 😆
@MrSlimeOfSlime
@MrSlimeOfSlime 3 жыл бұрын
wait, isnt that a black pen?
@terrybickerton1455
@terrybickerton1455 3 жыл бұрын
Can someone explain this to me? I swear (-1)^i= e^(-pi) and i^(-1)= -i e^(-pi) doesn't equal -i
@dqrk0
@dqrk0 3 жыл бұрын
@@terrybickerton1455 its -1 TIMES i
@terrybickerton1455
@terrybickerton1455 3 жыл бұрын
@@dqrk0 ohh lol thanks. im clearly blind
@3snoW_
@3snoW_ 3 жыл бұрын
6:20 - "if m = 1 or 2" OR "n = 1", that's what you should have said. You need at least one of the 2 conditions to be true, not both at the same time. You pointed out that when m > 3 (first condition is false) and n = 1 (second condition is true) then m*1 = m^1 = m, so (m,1) is a solution. There is also the case where m=2 (first condition is true) and n=2 (second condition is false) and 2*2 = 2^2 = 4, so (2,2) is also a solution.
@md2perpe
@md2perpe 3 жыл бұрын
Another way of solving m+n = mn is to rewrite it as (m-1)(n-1) = 1 which has integer solutions m-1 = n-1 = 1, i.e. m = n = 2.
@udic01
@udic01 3 жыл бұрын
Me too...
@fatemehparvizi6981
@fatemehparvizi6981 3 жыл бұрын
If we put m and n zero which is an integer it works. It means that it is true if we put x zero and a and b any integers except zero. And the other solution is a=b=1 , x=2 For any integers.
@md2perpe
@md2perpe 3 жыл бұрын
@@jkid1134 m-1 = n-1 = 0 doesn't imply m=n=0. It's however true that m=n=0 is a solution to m+n = mn. That corresponds to x=0 and a,b free (excluding a=b=0, since 0^0 isn't welldefined).
@jkid1134
@jkid1134 3 жыл бұрын
@@md2perpe fixed my error, thanks. Too early to be doing this, haha
@vinc17fr
@vinc17fr 3 жыл бұрын
Yes, completing the product is what Michael often does, even when not necessary. It is surprising that he didn't do that here.
@knvcsg1839
@knvcsg1839 3 жыл бұрын
That intuition of trying for m>=3 is really something that we need to get here. The remaining is so easy.
@OOobstkuchenOO
@OOobstkuchenOO 3 жыл бұрын
I think the easiest way to solve this is to notice that the problem can be rewritten as (x^a - 1)(x^b - 1) = 1 and noting that, everything being integers, this immediately implies either x^a=x^b=2 or x^a=x^b=0 since the only factorizations of 1 are 1*1 and -1*-1.
@birbwithscarf
@birbwithscarf 3 жыл бұрын
How can x^a+x^b be rewritten as (x^a-1)(x^b-1)=1?
@khoiduongminh5111
@khoiduongminh5111 3 жыл бұрын
@@birbwithscarf x ^ a * x ^ b - x ^ a - x ^ b + 1 = 1
@birbwithscarf
@birbwithscarf 3 жыл бұрын
@@khoiduongminh5111 sorry, i understand your equation but how do you rewrite it as (x^a - 1)(x^b - 1) = 1?
@Danicker
@Danicker 3 жыл бұрын
@@birbwithscarf It's not that x^a+x^b can be rewritten, it's the entire equation x^a+x^b=x^(a+b) that can be written. In case that still doesn't make sense here is a step-by-step explanation: x^a + x^b = x^(a+b) x^a + x^b = x^a * x^b 0 = x^a*x^b - x^a - x^b 1 = x^a*x^b - x^a - x^b + 1 1 = (x^a - 1)(x^b - 1) by factorisation Then, as OP pointed out, since x, a and b are natural numbers, x^a - 1 and x^b - 1 must both be integers, which leads to 1, 1 and -1, -1 as the only solutions.
@birbwithscarf
@birbwithscarf 3 жыл бұрын
@@Danicker Ohh ok, thank you so much!
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
4:03 Michael’s homework 6:52 Good Place To Stop
@qzwxecrvtbynumi256
@qzwxecrvtbynumi256 3 жыл бұрын
3 weeks ago?
@pppp-ij8tk
@pppp-ij8tk 3 жыл бұрын
@@qzwxecrvtbynumi256 😳
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
@@qzwxecrvtbynumi256 THE TIME WIZARD
@Oleg-mv6cx
@Oleg-mv6cx 3 жыл бұрын
I hate you
@timetraveller2818
@timetraveller2818 3 жыл бұрын
@@qzwxecrvtbynumi256 bruh he is just in the 4 th dimension it is a common integral in relativity and uncertainty principle
@Koisheep
@Koisheep 3 жыл бұрын
2:38 Didn't expect to be reminded of Hölder's inequality but here we are
@h4z4rd28
@h4z4rd28 3 жыл бұрын
XD
@sanderscheel
@sanderscheel 3 жыл бұрын
I think I got recomended this video because I searched for Hölder's inequality. '-8-'
@useruser-ht8tw
@useruser-ht8tw 3 жыл бұрын
Koishi!
@user-engahmed
@user-engahmed 3 жыл бұрын
I hope to put a translation into Arabic, please, please🙏🥺
@TrinoElrich
@TrinoElrich 3 жыл бұрын
Ah, yes, good ol' conjugate exponents lol
@StarnGz
@StarnGz 3 жыл бұрын
0:07 I come in every video and expect the sentence: 'and by natural number, I mean positive integers' lol
@garrettthompson3286
@garrettthompson3286 3 жыл бұрын
gotta assert that 0 isn't natural every video for dominance
@egillandersson1780
@egillandersson1780 3 жыл бұрын
It is a very usefull clarification, because if 0 belongs to N or not depends on the authors. None is wrong, because it's just a convention.
@benjaminvatovez8823
@benjaminvatovez8823 3 жыл бұрын
@@egillandersson1780 Is it the norm in English? In French from Belgium, N always includes 0 as positive integers do (we don't say non-negative integers in French. If we want to exclude 0, we say "strictly positive".)
@egillandersson1780
@egillandersson1780 3 жыл бұрын
@@benjaminvatovez8823 I don't know : I'm a french-speaking Belgian. I learned the same as you.
@notar2123
@notar2123 3 жыл бұрын
@@benjaminvatovez8823 In Bosnia (and I can vouch it's the same in all of former Yugoslavia) I've been taught that N does not include 0.
@nipunnohria186
@nipunnohria186 3 жыл бұрын
Another way for second: Case1- n=1 m=anything Case 2 m,n !=2 Suppose p is a prime divisor of n and its power is k Power of p in m^n-1=k So k=>n-1 Since p^k divides n P^n-1=
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
HOMEWORK : Find the set of all possible values that can be attained by the expression (ab + b²)/(a² + b²), where a and b are positive real numbers. Express your answer in interval notation. SOURCE : 2012 HMMT - Guts Round
@debayuchakraborti1963
@debayuchakraborti1963 3 жыл бұрын
that looks like that imo p6
@anthonypham7563
@anthonypham7563 3 жыл бұрын
Let a = b*x, where x is a positive real number. Then the expression becomes E = (b^2*x + b^2)/(b^2*x^2 + b^2) = (x + 1)/(x^2 + 1). We notice that E is always positive, and E becomes arbitrarily close to 0 for large x, so 0 is the lower open bound. The function is analytical over the positive numbers, so we can simply take the derivative of E wrt x and set it to 0. Thus, E' = 0 = (x^2 + 1 - 2x^2 - 2x)/(x^2 + 1)^2 => x^2 + 2x - 1 = 0 => x = -1 +/- sqrt(2). Note that we are not concerned with x = -1 - sqrt(2) since it is a negative solution. Finally, we evaluate E at the endpoints and the extreme points: E(0) = 1, E(-1 + sqrt(2)) = sqrt(2)/(4 - 2sqrt(2)) = (sqrt(8) + 2)/4 = (sqrt(2) + 1)/2 > 1. E is continuous for x > 0, so the set of all possible values of E is (0, (sqrt(2) + 1)/2].
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
SOLUTION *(0, (1+√2)/2]* Suppose that k = (ab + b²)/(a² + b²) for some positive real a, b. We claim thatklies in (0, (1+√2)/2]. Let x = a/b. We have that (ab + b²)/(a² + b²) = (a/b + 1)/((a/b)² + 1) = (x + 1)/(x² + 1). Thus, x + 1 = k(x²+ 1), so the quadratic kt² − t + k − 1 = 0 has a positive real root. Thus, its discriminant must be nonnegative, so 1² ≥ 4(k−1)(k) ⇒ (2k−1)² ≤ 2, which implies (1−√2)/2 ≤ k ≤ (1+√2)/2. Since x > 0, we also have k > 0, so we know that k must lie in (0, (1+√2)/2]. Now, take any k in the interval (0, (1+√2)/2]. We thus know that 1² ≥ 4k(k−1), so the quadratic kt² − t + k − 1 = 0 has a positive solution, (1+√(1−4k(k−1)))/2k. Call this solution x. Then k(x²+ 1) = x + 1, so (x + 1)/(x² + 1) = k. If we set a = x and b = 1, we get that (ab + b²)/(a² + b²) = k. Thus, the set of all attainable values of (ab + b²)/(a² + b²) is the interval (0, (1+√2)/2].
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
@@aashsyed1277 Yeah
@pullamallama2669
@pullamallama2669 3 жыл бұрын
Wait doesn’t using 2x2=2^2 work as well? That is, with mn=m^n
@karankamat2087
@karankamat2087 3 жыл бұрын
the problem with the second problem is we've proved we can't have m>=3 AND n>=2 I.e we can't have both together but that does not mean m
@danielbranscombe6662
@danielbranscombe6662 3 жыл бұрын
Yes, I believe he forgot that the restriction of n>=2 only applies when m>=3, so for m=1 and m=2 he has to consider any possible n to be complete. So to complete it. m=1 gives 1*n=1^n, n=1 which is already part of the solution given m=2 gives 2n=2^n n=2 giving the extra solution of m=n=2
@DawidEstishort
@DawidEstishort 3 жыл бұрын
@@karankamat2087 Yeah, it's a classic mistake of assuming \(A+B)\A+\B
@srijanbhowmick9570
@srijanbhowmick9570 3 жыл бұрын
@@DawidEstishort Can you explain that notation ?
@DawidEstishort
@DawidEstishort 3 жыл бұрын
​@@srijanbhowmick9570 \ "negation" + "and" (usually it is written as ^ but I forgot I could write that) "if and only if" "It is not true that both A and B are true, if and only if A is not true and B is not true." That is false because it should be "It is not true that both A and B are true, if and only if A is not true or B is not true."
@SV-yo6nq
@SV-yo6nq 3 жыл бұрын
this should be called 'the middle schooler's dream'
@scribblespoon1919
@scribblespoon1919 3 жыл бұрын
fever dream
@iabervon
@iabervon 3 жыл бұрын
If a, b, c, and n are positive integers, n^a + n^b can't equal n^c if n > 2. If (wlog) a≥b, n^a
@davidseed2939
@davidseed2939 3 жыл бұрын
error at 6:26 if m>=3 and n>=2 has been eliminated. then the remaining possible solutions are m=1,2 OR n=1 in fact by checking we find the solutions are n=1 for any m or m=2= n^(1/(n-1)) and the only integer value of n for that expression is 2
@ichigonixsun
@ichigonixsun 3 жыл бұрын
1:31 "So since they're natural numbers, none of them are zero." TRIGGERED
@icfj77
@icfj77 2 жыл бұрын
For the equation m*n=n+m, if we consider gauss integers, i.e. , complex numbers like z=a+bi, with a and b integer, we have not only that m; n=1; 1 and m; n=2; 2, but also that m=1+i and n=1-i (or m=1-i and n=1+i as well).
@jerrysstories711
@jerrysstories711 3 жыл бұрын
The title made me thing someone dreamed about this problem. Math dreams always feel so weird. I dreamed once that pi was suddenly equal to 4,. Everything was all wonky, and I was having a hard time getting to work.
@Umbra451
@Umbra451 3 жыл бұрын
when pi=4, circles become squares
@jerrysstories711
@jerrysstories711 3 жыл бұрын
@@Umbra451 Nah, they were still circles, the underlying geometric of the universe was just difference suddenly, such that the diameter and circumference had a different ratio. It was really weird.
@frodoswift70
@frodoswift70 3 жыл бұрын
I dreamed a derivation of the Pythagorean theorem, which I had never previously derived
@jbtechcon7434
@jbtechcon7434 3 жыл бұрын
@@frodoswift70 when you woke up, did it turn out to be a valid derivation?
@EebstertheGreat
@EebstertheGreat 3 жыл бұрын
@@Umbra451 Actually, if the value of pi is not 3.14159..., rectangles can't exist at all.
@udic01
@udic01 3 жыл бұрын
The method of (m-1)(n-1)=1 also gives answer to the homework question (m,n in Z). Because either m-1=n-1=1(which we already seen the solution in the video) or m-1=n-1=-1 and the second option gives us x=0 and a and b are free.
@demenion3521
@demenion3521 3 жыл бұрын
exactly my thoughts!
@joaquingutierrez3072
@joaquingutierrez3072 3 жыл бұрын
1:24. My approach: m + n = mn m = mn - n m = (m - 1)n m/(m - 1) = n So (m - 1) divides both m and m - 1 So (m - 1) divides m - (m - 1) = 1 So, as (m - 1) non-negative we must have m - 1 = 1 m = 2 Substituing we get 2 + n = 2n 2 = n n = 2 This approach works when n and m are integers too. But in that case we need to consider the case m - 1 = -1 NOTE: Sorry, I did not consider m - 1 = 0. In that case n + 1 = n 1 = 0, a contradiction
@chungyanwong7293
@chungyanwong7293 3 жыл бұрын
I have another similar dream too but I don't know how to solve this: When does (x+y)^n = x^n +y^n for all x,y,n∈ℝ. I know equation satisfies when either -{n=0 | y= 2-x} or- { n=1 | x, y∈ℝ} or {x=0 | y, n∈ℝ} or {y=0 | x, n∈ℝ} but how to write a proof for n>1? P.S. I also know that for n
@romilgoel4191
@romilgoel4191 3 жыл бұрын
I am not sure but.. expanding via binomial theorem gonna help ?
@chungyanwong7293
@chungyanwong7293 3 жыл бұрын
@@romilgoel4191 Thanks for a reply, that's where I was stuck. After Bionomial Theorem and testing different n values, I got into polynomials of all degrees beyond the fifth one and I don't know if I should use Galois Theory or something for solving polynomials beyond fifth degree
@Haalita21
@Haalita21 3 жыл бұрын
I’m not sure if your first solution is valid as LHS = 1 but RHS = 2. Otherwise, other than the trivial solution of n=1, you have an infinite solutions of n>1 when xy=0, i.e. either or both of x and y = 0 and that isn’t too difficult to see from the binomial expansion of (x+y)^n.
@chungyanwong7293
@chungyanwong7293 3 жыл бұрын
@@Haalita21 Oh wait, you're right about my first solution!! Because (x +y)^0 = 1 and x^0 +y^0 = 2. My Math error. Thank you for pointing out :)
@michaelcampbell6922
@michaelcampbell6922 Жыл бұрын
{n is odd | x=-y, y∈ℝ} satisfies the equation
@cicik57
@cicik57 Жыл бұрын
Using diophant equasion factorisation trick: x^a + x^b - x^a x^b -1 = -1 x^a(1-x^b) - 1 ( 1 - x^b ) = - 1 (x^a - 1)(x^b - 1 ) = 1 in natural numbers: x^a =2 and x^b = 2 or x^a =0 and x^b = 0 (what is impossible) so x = 2, a = 1, b = 1 is only solution ??
@江勖豪
@江勖豪 3 жыл бұрын
For the second question, I have some additional thoughts. For m>=3 and n>=2, m^(n-1)>= 3^(n-1) > n. So, while m=1 ,m=2 or n=1, m*n=m^n is solved. While n=1, m is free. While m=1, n=1. While m=2, n=1 or 2.
@michaelaristidou2605
@michaelaristidou2605 3 жыл бұрын
0 is a natural number, so simply adjust the question to be true for all positive naturals. Also m=2, n=2, is also a solution for the 2nd version of the problem.
@phiefer3
@phiefer3 3 жыл бұрын
0 is not a natural number actually, the first set of numbers that 0 belongs to is whole numbers.
@mryip06
@mryip06 2 жыл бұрын
natural numbers may include 0 depending places.
@trishanmondal7813
@trishanmondal7813 3 жыл бұрын
I suggest let there exists a prime p>2 that devide x The largest exponent of P thta should devide LHS is a and it should be (a+b) for RHS . It is possible iff b=0 but that doesn't lead to the set of natural number . . Only case : only p =2 devide x X≈2^r From here rest is easy
@titassamanta6885
@titassamanta6885 3 жыл бұрын
m|(m+n)=> m|n (m and n are not 0) Smilarly n|m. Hence m=n. This gives 2m = m^2 => m is 2 or 0. Though we assumed that m and n are not zero yet m=n=0 is a solution (if problem were to be solved for all integer values of m and n)
@tomkerruish2982
@tomkerruish2982 3 жыл бұрын
An alternate route (equivalent, but not using fractions) is noting that m + n = mn implies (1 - m)(1 - n) = 1; consequently, (1 - m) and (1 - n) are either both +1 or -1. The second choice gives us m = n = 2; the first choice yields m = n = 0, which is valid for x = 0 and a, b any positive integers, which are precisely the additional solutions resulting from using Z rather than N.
@Sora1the
@Sora1the 3 жыл бұрын
For the second question, wouldn't m=2 and n= 2 works as well? 2*2 = 2^2 = 4
@goduck-x6u
@goduck-x6u 3 жыл бұрын
1:34 Easier way: m + n = mn ==> (m-1)(n-1) = 1, so m = n = 2
@leonardovalente9772
@leonardovalente9772 3 жыл бұрын
i am seriously upset he didn't talk about (2,2) as a solution to the second problem
@alfredtrietsch215
@alfredtrietsch215 11 ай бұрын
Yes, at 5:52 narrowing down to m>=3 is not motivated
@Fine_Mouche
@Fine_Mouche 2 жыл бұрын
only (2;2) in N, but for m in N and m in R where are infinites countable other solutions for m = 1/3 we have n = 1/(3/2) , for m = 1/4 with have n = 1/(4/3), for m = 5, we have n = 1/(4/5) and so on. And for both n and m in R, there are infinite uncountable solutions which satisfy 1/m + 1/n = 1, it's just n = 1 / 1 - 1/m
@lucashoffses9019
@lucashoffses9019 3 жыл бұрын
6:30 shouldn’t the condition be m=1,2 *or* n =1, and not and? m=2 and n=2 works as a solution.
@mrphlip
@mrphlip 3 жыл бұрын
My working on this one was similar, but went like: m + n = mn n = m(n-1) m = n/(n-1) m = 1 + 1/(n-1) m-1 = 1/(n-1) LHS is an integer, so RHS is an integer, so n = 0 or 2 (I always forget that this channel typically defines ℕ as starting at 1... but then this also serves as the extension to ℤ) This gives our solutions as m=n=0 and m=n=2. so our solutions are: x^a = x^b = 2 ⇒ x = 2; a = b = 1 x^a = x^b = 0 ⇒ x = 0; a, b ≠ 0
@benedictrodil4931
@benedictrodil4931 3 жыл бұрын
Also, a ≠ -b
@mrphlip
@mrphlip 3 жыл бұрын
@@benedictrodil4931 Good point, I missed that. Actually, thinking about it I think the condition is a, b > 0
@benedictrodil4931
@benedictrodil4931 3 жыл бұрын
@@mrphlip Ah yes they are, I also missed that too
@balajik8473
@balajik8473 3 жыл бұрын
m = n/n-1, n and n-1 are always co primes, so that's the simplest form of rational p/q, for it to be integer, denominator should be 1 -> n-1=1
@davidgustavsson4000
@davidgustavsson4000 3 жыл бұрын
mn = m^n log(mn) = n log(m) log(n) = (n-1) log(m) Trivially true for n = 1 If m = n ≠ 1, n = 1+1 = 2 If n>1 (n-1)>log(n), and if m>2 log(m)>1 so lhs
@mathOgenius
@mathOgenius 3 жыл бұрын
And I thought I was dreaming
@anupagarwal4843
@anupagarwal4843 3 жыл бұрын
In the follow up question, m and n can both be equal to 2. this would be another solution. I think you have missed this one.
@liorean
@liorean 3 жыл бұрын
I've had math textbooks in Swedish and English, by authors from Sweden, UK, US and Australia, and formulae and tables books from three different publishers or universities, and every single one of them distinguishes positive integers, ℤ+, from natural numbers, ℕ, in that the latter includes zero. I just learned that not everybody use these definitions. Why the difference?
@peterdecupis8296
@peterdecupis8296 2 жыл бұрын
in modern Set theory N is the minimal inductive set {0,1,2...}, i.e. the minimal infinite ordinal; thus its starting element is the null set, i.e. zero! This is consistent with the classic Peano's Axiomatic Foundation of N, where the presence of zero is explicitly stated by the first axiom. Z is commonly defined as the Set of translations in N (i.e. is a quotient set of N×N with respect to a peculiar "shift-equivalence" relation); therefore, rigorously speaking, Z+ is not the same set as N, whereas there is an isomorphic bijection between them; in the case of point, the isomorphism maintain ordering and fundamental operations (sum, multiplication, and exponentiation). Unfortunately there is no universality in some conventional symbols: e.g. for some authors Z+ does contain the zero (i.e. the null-translation in N), for others it doesn't
@andrewparker8636
@andrewparker8636 3 жыл бұрын
Note to self - RTFQ . I thought we were solving for a,b in N and x in R. Which is interesting. And you can classify solutions, but can't compute them closed form.
@rbnn
@rbnn 3 жыл бұрын
For the first problem, assume wlog b>=a and divide by x^a to get 1+x^(b-a)=x^b. x>1 by inspection, and if b>a then taking both sides mod x yields a contradiction. Hence a=b, and 1+1=x^b, so x^b=2, a=b=1, x=2.
@calyodelphi124
@calyodelphi124 3 жыл бұрын
mn=m^n is also true if m=n=2 but that is the only solution that exists for the case n>1. For all other solutions n must = 1, and then m can be any natural number.
@jamirimaj6880
@jamirimaj6880 3 жыл бұрын
3:22 is that really a symbol for contradiction?
@happygimp0
@happygimp0 3 жыл бұрын
1:33 What, why? Why shouldn't they be 0? It would work with 0 and 0 is a natural number.
@zeropotential6830
@zeropotential6830 3 жыл бұрын
Hi dear Micheal Penn I made a problem using my childhood experience when i was palying with my elder brother's calculator. Problem:a^n= x^99 Where a and n are integer. Find the value of a.For value a n should be maximum.
@mrhatman675
@mrhatman675 3 жыл бұрын
I did it like this for the second problem m^n-1=n suppose n≠1 this means m^n-1 can be written in the form m×m×m... n-1 times=n which means n|m and so we can write m=n×k which means k×m×m...=1 but since k and m are integers and 1 is a pime number and in this case the only number that devides it is 1 and can be written only in the form of 1×1×1... so it means k=1 and m=1 thus n=1 which can t be true so our assamtion is wrong so n has to be 1
@srprantor
@srprantor 3 жыл бұрын
Cynthia loves Pokemon and she wants to catch them all. In Victory Road, there are a total of 80 Pokemon. Cynthia wants to catch as many of them as possible. However, she cannot catch any two Pokemon that are enemies with each other. After exploring around for a while, she makes the following two observations: 1.Every Pokemon in Victory Road is enemies with exactly two other Pokemon. 2.Due to her inability to catch Pokemon that are enemies with one another, the maximum number of the Pokemon she can catch is equal to n. What is the sum of all possible values of n?
@skywing786
@skywing786 3 жыл бұрын
If a pokemon , say mimikyu , is enemies with another pokemon , say pikachu, does that imply that pikachu is enemies with mimikyu too ?
@Abcd-hs4cv
@Abcd-hs4cv 3 жыл бұрын
If you divide both sides to x^a+b you get 1/x^a + 1/x^b=1 and only 1/2 + 1/2 equals to 1 so x=2 a, b =1 in natural numbers. And in all real numbers solution is a=b=logx 2.
@Guessyyyy6270
@Guessyyyy6270 3 жыл бұрын
For decimal numbers etc. We have X = sqrt(2) and a & b = 2
@l.3ok
@l.3ok 3 жыл бұрын
For n = 2 we have that n = m^{n-1} implies that 2 = m and we also have a solution.
@divisix024
@divisix024 3 жыл бұрын
I would solve m+n=mn in N by factoring it as (m-1)(n-1)=1, so we must have m=n=1. The matter is similar if we’re in Z, just that we may have m=n=-1 as well
@shiveshpratapsingh3501
@shiveshpratapsingh3501 9 ай бұрын
For integer solutions (m,n) we have (0,0) and (2,2) as the only solutions
@damianbla4469
@damianbla4469 3 жыл бұрын
For the second problem (m*n = m^n) we have also infinitely many solutions of the form n=1, m=arbitrary constant.
@irrelevant_noob
@irrelevant_noob 3 жыл бұрын
... but that's what was already described in the video, so what do you mean "ALSO"? o.O
@mrvnoble
@mrvnoble 3 жыл бұрын
Trivially, in the integers, x=0 gives solutions for all a,b. I haven't done any work beyond that yet.
@242math
@242math 3 жыл бұрын
watching and learning bro, you are a master at this
@irrelevant_noob
@irrelevant_noob 3 жыл бұрын
... a master who can't negate a conjunction? xD
@tcoren1
@tcoren1 3 жыл бұрын
If x os at least two, and wlog a>b (I'll treat a=b and x=1 later) then: x^(a+b)=x^a*x^b>x^a*2^1=x^a+x^a>x^a+x^b Contradiction x=1: 1=1+1 contradiction a=b: (x^a)^2=2(x^a) x^a=2 x=2 a=b=1
@ishansingh2391
@ishansingh2391 3 жыл бұрын
Try this Find all pairs (a,b) of real numbers such that whenever p is a root of x^2 + ax+b. =0 then p^2 - 2 is also a root of the equation. Source regional mathematics olympiad : India
@mansoorali7951
@mansoorali7951 3 жыл бұрын
1) Since m+n is a multiple of m (i.e, mn), which is only possible if n is a multiple of m. But m+n is also a multiple of n (i.e, nm), which means that m is a multiple of n. Since m is a multiple of n and n is a multiple of m => n=m. Thus m+n =2m=m^2 => m=n=2 2) mn=m^n => m^(n-1)=n For n=1; LHS=RHS = 1 for every value of m. For n=2; m=2 => the result holds for m=n=2 also For n>3; m=ⁿ⁻¹√n, which is an irrational number for n>3 contradicting the fact that m is a natural number. Hence the relation doesn't hold for n>3. Thus the relation holds; If n=1 (for any value of m) OR If m=n=2.
@Nikioko
@Nikioko 3 жыл бұрын
How do you define natural numbers? Positive integers or non-negative integers?
@LukePalmer
@LukePalmer 3 жыл бұрын
2:23 "but that's impossible" is hilarious to me for some reason
@uttankjha8888
@uttankjha8888 3 жыл бұрын
The dejected/disappointed look is everything
@gordistador
@gordistador 3 жыл бұрын
It doesnt have to be x=2. It just has to be x^a = 2. X could be any number larger than 1, as long as the exponent is the right value to turn X into 2.
@JBRewind
@JBRewind 3 жыл бұрын
For the mn = m^n, calling it now before I finish watching: m and n must both equal 2 OR m can be anything and n is 1.
@JBRewind
@JBRewind 3 жыл бұрын
Oh, so I found a solution he didn't. How?
@surem8319
@surem8319 3 жыл бұрын
Alternatively one could rewrite the expression to: m = n/(n-1) and utilise the fact that the only way n-1 can divide n is if it is equal to 1 (since n is different from 0) which gives us n = 2 immediately.
@tzovgo
@tzovgo 3 жыл бұрын
DEFINITION: Let a [n] b = a [n-1] a [n-1] a [n-1] a ... a [n-1] a (with b a's). a [0] b = a+1. (Note that this is only defined for natural numbers.) This makes addition a [1] b, multiplication a [2] b, and exponentiation a [3] b. STATEMENT: For all k>0, i>0, n=2, m=2 solves n [k] m = n [i] m. PROOF: 2 [k] 2 = 2 [k-1] 2 = 2 [k-2] 2. In general, 2 [k] 2 = 2 [k-j] 2 as long as k > j. (At k = j, we have 2 [0] 2 = 3 =/= 2 [1] 2 = 4) Choose j = k - 1. 2 [k] 2 = 2 [1] 2 = 4. This reasoning applies exactly to 2 [i] 2 as well. Thus, 2 [k] 2 = 2 [i] 2 for all k>0, i>0.
@Utesfan100
@Utesfan100 3 жыл бұрын
n+m=mn implies (m-1)(n-1)=1. Since both are integers, m-1=n-1=+/-1. Thus m=n=2, or m=n=0, but the second is not in N.
@federicorossi8587
@federicorossi8587 3 жыл бұрын
Can you please teach how to play message in a bottle?
@AlphaPizzadog
@AlphaPizzadog 3 жыл бұрын
X = 2 A = 1 B = 1 Or if a and b don't need to be integers, an example: X = 4, A = 0.5, B = 0.5
@kaizoisevil
@kaizoisevil 3 жыл бұрын
For the mn=m+n, I did simon’s favorite factoring trick. (m-1)(n-1)=1
@AnonimityAssured
@AnonimityAssured 3 жыл бұрын
I think we can all delight in having spotted the glaring omission of m = n = 2.
@Wurfenkopf
@Wurfenkopf 3 жыл бұрын
This is a strange choice of the dominion, I would be curious to find the solutions outside of the natural numbers. At least, setting a, b as natural but x real
@mike1024.
@mike1024. 3 жыл бұрын
The opposite of m>=3 AND n>=2 is m
@demenion3521
@demenion3521 3 жыл бұрын
the problem gets more interesting if you allow x, a, b to be negative. if you only consider m+n=m*n, then only m=n=0 is a new solution over the integers, but if a or b are negative, that makes x^a or x^b rational and not integers.
@MrBrain4
@MrBrain4 3 жыл бұрын
Here's how I solved: Write x^a and x^b in base x. Adding these when a!=b results in a sum in base x such as 10010, which is not a power of x. So for any possible solution, a=b. For x=1, we get 1+1=2, which is not correct. For x>2, we result in a sum in base x such as 2000, which is not a power of x. So for any possible solution, x=2. The only a and b that work are a=b=1, since we get in base 2, 10+10=100. For any higher a and b, x^a + x^b = x^(a+1), which is not equal to x^(a+b).
@patrickhodson8715
@patrickhodson8715 3 жыл бұрын
m = n = 2 is also a solution to the second question
@theash4361
@theash4361 3 жыл бұрын
An alternative method could be taking a
@thelivetoad
@thelivetoad 3 жыл бұрын
What about rational solutions? Diophantos' method enumerates all solutions to m + n = mn in Q.^2
@kadoozy3752
@kadoozy3752 3 жыл бұрын
Am I the only one who heard a moan at 1:09 ; 3:38? :))) I think math isn't the only thing is going on there :))))
@daltonrainer6734
@daltonrainer6734 3 жыл бұрын
Same bro lmao
@seroujghazarian6343
@seroujghazarian6343 3 жыл бұрын
mn=m^n also has (m,n)=(2,2) as a solution
@titan1235813
@titan1235813 3 жыл бұрын
On the second problem, m = n = 2 is also a valid solution.
@winterdark8657
@winterdark8657 3 жыл бұрын
I have a question :"if f'(a)=f'(b)f(a)=f(b) with a,b is realnumber" is is right??? Please
@NoahUbf
@NoahUbf 3 жыл бұрын
"not because we need to, but because we can" :)
@NikolayVityazev
@NikolayVityazev 3 жыл бұрын
m=2, n=2 also works
@log2306
@log2306 3 жыл бұрын
That's literally the only solution
@teeweezeven
@teeweezeven 3 жыл бұрын
@@log2306 I think he means for the question mn=m^n
@NikolayVityazev
@NikolayVityazev 3 жыл бұрын
@Teeweezeven, @Neo right, for mn=m^n
@themanwhocarriesthesun780
@themanwhocarriesthesun780 3 жыл бұрын
Here's how I solved it. Assume a>b (1) and divide both side by x^a we have 1 + x^(b-a) = x^b (2). Of course, x^(b-a) is a non-integer because of (1). Thus, it does not satisfy (2). This proves (1) false. Similarly, the proof for a=3, x^a >= 3^a > 2 which does not satisfy (3). So, we must have x=2 (4). From (3) and (4), we solve for a=b=1. So, the only solution is x=2, a=b=1.
@heeraksharma1224
@heeraksharma1224 3 жыл бұрын
Can this identity be used: (Secx)^2 + (cosecx)^2 = [(secx)^2]•[(cosecx)^2]
@michawalus842
@michawalus842 3 жыл бұрын
I found a quicker solution: So we know that x^a + x^b = x^a * x^b We move everything to right side and add 1 to both sites 1 = x^a*x^b - x^a - x^b + 1 Notice that this is (x^a - 1)(x^b - 1) = 1 We know that both x^a - 1 and x^b - 1 are non negative integers so x^a - 1 = x^b - 1 = 1 x^a = x^b = 2 Only numbers that satisfy this equation are x = 2, a = 1, b=1.
@michawalus842
@michawalus842 3 жыл бұрын
In this method it's easy to generalize it to all integers, only difference is that x^a - 1 and x^b - 1 can be equal to the - 1 so x^a = x^b = 0. Therefore we get more solutions in form: (x, a, b) = (0, m, n) where m and n are non zero integers.
@Creativemathlearning
@Creativemathlearning 3 жыл бұрын
Is there another solution?
@juliusgutjahr1406
@juliusgutjahr1406 3 жыл бұрын
6:27 but if you set m=n=2 the equation would still be true
@cyan1294
@cyan1294 3 жыл бұрын
i think for the "homework" we would first start with m
@Adomas_B
@Adomas_B 3 жыл бұрын
Top 10 facts teachers don't want you to know about
@teslachess7319
@teslachess7319 3 жыл бұрын
Is it possible to make e with complex numbers without using e?
@蛰扉
@蛰扉 3 жыл бұрын
m+n=mn, we can solve this by making this mn-m-n+1= 1, then (m-1)(n-1)=1. 1 can only be factored as 1*1, hence m=n=2
@rileywaugh1022
@rileywaugh1022 3 жыл бұрын
If x>2 can one work mod (x-1) in order to arrive at a contradiction?
@mrhatman675
@mrhatman675 3 жыл бұрын
I did it like that m+n=m×n which means m=-n÷(1-n) whih means m=-(n÷(n-1)) suppose n is 2k+1 this means m=-((2k+1)÷2k) but this can t be a an integer and we want m an integer so n=2k which means m=-(2k÷(2k-1)) and we know the only uneven number that devides all numbers and in this case our even number n is 1 so 2k-1=1 which means n=2 and m=2 so x=2 a=b=1
@dominiquebercot9539
@dominiquebercot9539 3 жыл бұрын
J’ai essay é autrement Si a =b, on trouve x=2 Si a
@KarlDeux
@KarlDeux 3 жыл бұрын
I am afraid that 0 is a natural number. You just have to consider the case so you can skip it afterwards.
@enigma-zb7km
@enigma-zb7km 3 жыл бұрын
0 is a natural number, and that's an other solution if x=0, and a,b different from 0
@walidch9162
@walidch9162 3 жыл бұрын
mn=m^n (2;2) is a solition Because the condition is n≥2 if m≥3 Then if m≤2 that doesnt mean n≤1
@giuseppelanna
@giuseppelanna 3 жыл бұрын
I can't stop thinking it looks like the last Fermat's therorem
@ZeroSleap
@ZeroSleap 3 жыл бұрын
Isnt m=2 and n=2 a solution to m*n=m^n 2*2=2^2
@tonyennis1787
@tonyennis1787 3 жыл бұрын
At about 3:20, why did you decide 1/n >= 2/3 and not 1/n
@schweinmachtbree1013
@schweinmachtbree1013 3 жыл бұрын
if 1/3 + 1/n >= 1 then 1/n >= 2/3 by subtracting 1/3 from both sides of the inequality :)
@tonyennis1787
@tonyennis1787 3 жыл бұрын
@@schweinmachtbree1013 Thanks, that part was just a little too fast for me
@MrRyanroberson1
@MrRyanroberson1 3 жыл бұрын
you missed a solution at the end: m=n=2 again. 2+2=2*2=2^2=... so mn=m^n
@Lucifri
@Lucifri 3 жыл бұрын
It would work in Z with x=1 and a or b =0 while the other is 1, right?
A viewer suggested algebra problem.
13:04
Michael Penn
Рет қаралды 27 М.
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
Beat Ronaldo, Win $1,000,000
22:45
MrBeast
Рет қаралды 158 МЛН
Two math problems from Africa.
10:48
Michael Penn
Рет қаралды 30 М.
Indian Mathematical Olympiad | 1992 Question 8
22:03
Michael Penn
Рет қаралды 165 М.
Solving An Insanely Hard Problem For High School Students
7:27
MindYourDecisions
Рет қаралды 3,6 МЛН
two ways, one sum
14:03
Michael Penn
Рет қаралды 739
Squaring Primes - Numberphile
13:48
Numberphile
Рет қаралды 1,7 МЛН
a floor equation.
15:11
Michael Penn
Рет қаралды 58 М.
How to solve a clever sum of sums problem
7:45
MindYourDecisions
Рет қаралды 440 М.
A trick I have ignored for long enough...
12:37
Michael Penn
Рет қаралды 303 М.
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
A very interesting differential equation.
16:28
Michael Penn
Рет қаралды 960 М.