A little slip at the very end: when you multiply the numerator and denominator of (1/b)/(1-(1/b)) through by b you wrote b/(b-1), but that should be 1/(b-1) for the final answer.
@backyard2824 жыл бұрын
Everything so perfect and then that slip at the end :D Great video nevertheless
@jagula4 жыл бұрын
8:18 that chalk fell xD
@pedromooregaissler63784 жыл бұрын
not a true Mathematician if you don't find typos hahahahah
@vardaandua35854 жыл бұрын
The last step is wrong...it should be 1/(b-1)
@NagyonCsoki4 жыл бұрын
No, the last step is correct, because the first term of the geometric series is not 1. As it was mentioned, the first term is a=1/b and the common ratio is r=1/b, so the infinite sum is a/(1-r). You may check it here: en.wikipedia.org/wiki/Geometric_series
@mooncowtube4 жыл бұрын
Yes, the geometric series sum with a=1/b and r=1/b is done correctly, Levi4234, to give (1/b)/(1-(1/b)), but when Michael multiplies the numerator and denominator of that through by b at the very end he wrote b/(b-1), but that should be 1/(b-1).
@ricardocavalcanti33434 жыл бұрын
@@NagyonCsoki So a/(1-r) = (1/b)/(1-1/b) = (1/b)/((b-1)/b) = 1/(b-1).
@noway28314 жыл бұрын
It's always the last step
@candamir264 жыл бұрын
Yap, 1/(b-1) should be the final answer.
@goodplacetostop29734 жыл бұрын
5:05 Let’s go ahead and do that 11:44 That’s a good place to stop No homework today but don’t forget to subscribe to Good Place To Start, hopfully a future podcast by Michael.
@Dionisi04 жыл бұрын
that's a bad place to stop
@goodplacetostart90994 жыл бұрын
Lemme tel you 0:01 is the right place to start
@tonyhaddad13944 жыл бұрын
What is the last homework you did share it with us ?????? I need it 😥
@goodplacetostop29734 жыл бұрын
@@tonyhaddad1394 I’m too lazy right now to dig in KZbin comments 😂 Just give me one topic you want an homework for and I’ll see what I can do for tomorrow
@tonyhaddad13944 жыл бұрын
@@goodplacetostop2973 dont worry bro i m just kidding about now but when you can give us a homework do it i like math problem a lot 😍
@Cosine_Wave4 жыл бұрын
4:02 I like that edit
@hsjkdsgd4 жыл бұрын
The little mistake in the end has been deliberately done to see who actually watches the videos carefully.
@gustavowadaslopes24794 жыл бұрын
This is the most teacher response ever.
@nagamanikomarla53762 жыл бұрын
@@gustavowadaslopes2479 honestly, yeah. My math teacher sometimes gives mcq tests where all options are wrong. She expects us to write “none of the given options are correct” as the answer.
@artemetra3262 Жыл бұрын
@@nagamanikomarla5376 pure torture
@papanujian77584 жыл бұрын
Amazing. You just explained this problems solution with a beautiful way. Can't hardly waiting for another videos
@xCorvus7x4 жыл бұрын
Instead of summing the rectangles sideways we can also notice that summing up from the right to the left gives 1*(1/b - 1/b^2) + 2*(1/b^2 - 1/b^3) + 3*(1/b^3 - 1/b^4) + 4*(1/b^4 - 1/b^5) + ... + (n-1)*(1/b^(n-1) - 1/b^n) + n*(1/b^n - 1/b^(n+1)) + ... = 1/b - 1/b^2 + 2/b^2 - 2/b^3 + 3/b^3 - 3/b^4 + 4/b^4 - 4/b^5 + ... + (n-1)/b^(n-1) - (n-1)/b^n + n/b^n - n/b^(n+1) + ... . Here every subtracted term is canceled by the next added term yielding the same sum you got by summing along the y-axis.
@sharpnova24 жыл бұрын
this is called telescoping
@M-F-H4 жыл бұрын
@@sharpnova2 not exactly, telescoping is (usually) when they completely cancel and you're left only with the first and the last term; here it's n•a(n) - (n-1)•a(n) = a(n) for each pair of neighbouring terms. But yes, roughly the same idea.
@jacobbills50024 жыл бұрын
Just watch this impressive Maths channel... it’s very nice like this kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@camrouxbg4 жыл бұрын
That is really slick! And fairly easily accessible to high school students. Thanks!
@petermueller1624 жыл бұрын
Cool trick on rotating the rectangles. I did a u-sub at an earlier step instead of graphing and ended up getting an alternating series that represents the original rectangles. Well done and thanks for the fun problem
@jacobbills50024 жыл бұрын
Just watch this impressive Maths channel... it’s very nice like this kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@PlutoTheSecond4 жыл бұрын
Interesting that, for your second tool, you had strict inequalities at both bounds, but you could have had a non-strict inequality for the upper bound (i.e. 1/b^(n+1) < x ≤ 1/b^n). That's because f(1/b^n) = floor (log_b(floor(ceil(1/b^n)/(1/b^n)))) = floor(log_b(floor(b^n))) = floor(log_b(b^n)) = floor(n) = n.
3 ай бұрын
from Morocco thank you for your clear full complete explanations you are a genious
@sephimarzliclican62244 жыл бұрын
michael penn is one of the reasons i’m still alive rn
@mihaipuiu62314 жыл бұрын
The Demonstration of Michael Penn is very simple, very clean, nice, and interesting.
@burhan87954 жыл бұрын
at 4:24 x cannot equal to 1. its definitely strictly less than 1 if n is a natural number and b is an interger bigger than 1
@ThePhysicsMathsWizard4 жыл бұрын
wow, i've never seen anything like this, thanks for making this video
@alxjones2 жыл бұрын
This one was on the MSU problem corner, I remember solving this with my calc 3 professor back in the day. We also did it with the square of the integrand, I remember we got (b+1)/(b-1)^2. Not sure it was right though!
Not sure what I get wrong. Checking numerically for e.g. b=1.1 this integral gives 8.0425 roughly which fits nicely with \sum_{k=1}^\infty 1/\ceil{b^k}. However your result would imply \sum_{k=1}^\infty 1/b^k = 1/(b-1)=10 which is different...
@sharpnova24 жыл бұрын
why are you dropping latex or whatever in a KZbin comment rofl
@digxx4 жыл бұрын
@@sharpnova2 Because for everyone familiar it is clear and unambiguous. Anyway, I think at 6:30 the inequality b^n b^n it does not follow \floor(1/x)>=b^n. Oh, I think I missread b is supposed to be an integer; that changes things... But the version above is general.
@richardlinsley-hood71494 жыл бұрын
The best integral is to use the average (mean) instead of delta being either a ceiling or a floor function. f(x + delta), where delta tends to 0 or f(x - delta), where delta tends to 0 are worse than f((x + delta) / 2), where delta tends to 0 This is accurate for straight lines precisely, even with large deltas. It is more accurate than either a floor or a ceiling value for all curved lines for deltas short of delta = 0.
@jacobbills50024 жыл бұрын
Just watch this impressive Maths channel... it’s very nice like this kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@kevinmartin77604 жыл бұрын
I think the result is the same without the inner floor function, provided (as stated) that b is an integer. Conversely if you keep the inner floor function the requirement that b be an integer can be removed. When x >= 1 we have (as shown) 1 = 2 then 0 1 so log_b(ceil(x)/x) will only cross an integer boundary when ceil(x)/x does (again because b is an integer, this only happens when ceil(x)/x crosses an integral power of b). If you relax the integral requirement on b, my second observation would not hold because ceil(x)/x could cross a power of b not at an integer boundary, and also b could be between 1 and 2 so my first observation would also not hold. The turning-the-graph-on-its side step is a bit hand-wavy, but I can see how you could first express the integral as a sum of the original (pink?) rectangles, turn that into a sum of sums: sum(all pink rectangles)[f(x)(width of the pink rectangle)] becomes sum(all pink rectangles)[sum(n=1 to f(x))[(width of the pink rectangle)]] then you reverse the summations to get sum(n=1 to infinity)[sum(all the pink rectangles at least as tall as i)[width of the pink rectangle]] finally reducing to sum(n=1 to infinity)[1/b^n]
@jacobbills50024 жыл бұрын
Just watch this impressive Maths channel... it’s very nice like this kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@mokkapatisiddharth57934 жыл бұрын
I cannot believe I solved a triple floor/ceiling problem all by myself!
@matiasjoaquinbustamantevej32784 жыл бұрын
Hi great video, but i think the answer is 1/(b-1) because when x=0 the función is indeterminate so you should remplace the 0 with (for example) 1/b^n and use the limit n->infinity. If you do this the answer is 1/(b-1) If i’m wrong i would be very happy to know why.Thanks
@laszloliptak6114 жыл бұрын
Nice integral. For the preparatory step I prefer to derive them the other way around to show how you get them to avoid steps that look like as if they come out of the blue. So in the beginning, after noting the the integrand is always an integer, I would find out when its value is n. Then using properties of floor, logarithm, and ceiling one can get the results you started with. Also, I don't see why b needs to be an integer. Wouldn't this hold as long as b>1?
@jacobbills50024 жыл бұрын
Just watch this impressive Maths channel... it’s very nice like this kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@themathsgeek85284 жыл бұрын
Amazing video Prof!!
@sonhoangngan40884 жыл бұрын
The result is 1/(b-1), not b/(b-1). This problem is very beautiful. Thank Michael Penn so much!!!
@jacobbills50024 жыл бұрын
Just watch this impressive Maths channel... it’s very nice like this kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@ЛевЯрков-е1ж4 жыл бұрын
Hello, i have a question. This way integrating functions named Lebesgue integral?
@CoderboyPB4 жыл бұрын
Lebesgue integration is simular, but I am not sure, that this is the same.
@backyard2824 жыл бұрын
@@herrmarx973 he added up rectangles sideways so it is lebesgue integral
@joeybf4 жыл бұрын
That function is Riemann integrable, but Lebesgue integration would give the same result. Since it's fresh in my mind from last semester, there's a nice result about "integrating vertically" for Lebesgue integration. It's in Chapter 2 Exercise 18 of Stein-Shakarchi's Real Analysis textbook.
@udic014 жыл бұрын
1/(b-1)
@leickrobinson51864 жыл бұрын
Ooo, so close! A swing and a miss!!
@Yiijbyygb4 жыл бұрын
Excellent problem
@rafael76964 жыл бұрын
Very nice problem
@michalbotor4 жыл бұрын
what is the best animation software for maths? blackboard.
@caesar_cipher4 жыл бұрын
good stuff ! but this will work for any real value of b > 1, b does no need to be integer
@ricardocavalcanti33434 жыл бұрын
Not so fast! At a certain point (c. 5:45) Michael used the identity floor(b^n) = b^n, which is valid only if b is integer.
@ikocheratcr4 жыл бұрын
I think Michael makes this last step "mistakes" to see if we are paying attention ...
@noelani9764 жыл бұрын
Really? I don't think so.
@raphaeljacobs35184 жыл бұрын
So amazing!
@atreidesson Жыл бұрын
that would be some kind of interesting if the floors weren't there and b=e, and I guess the lower integral limit should be 1 then
@taladon1014 жыл бұрын
Is the infinity symbol in the thumbnail a side ways 8?
@nintukumardas24844 жыл бұрын
Sir if you solve this problem I will be very grateful to you Statement:Find all (a,n) where a and n are integers and such that a^n|n^a - 1
@RexxSchneider2 жыл бұрын
For positive integers: (1, n) and (a, 1) trivially. You'll find that (2, 3) seems to be the only non-trivial solution. Negative values of n produce lots more solutions, but those are not very interesting.
@keshavrathore52284 жыл бұрын
so underrated channel
@levonnigogoosian75474 жыл бұрын
The question does not specify that x>= 1. If x is less than 1 then the solution does not apply.
@AlchemistOfNirnroot2 жыл бұрын
But what is b?
@KarlMarX_934 жыл бұрын
Brilliant!
@hmafussel944 жыл бұрын
Hmm very nice problem and great solution. When i tried i had also the idea that for x => 1 its 0, but for the swcond part i intervalled it between 1/n+1 and 1/n and couldnt figure it out after that and was not patient enough to try more xD
@jacobbills50024 жыл бұрын
Just watch this impressive Maths channel... it’s very nice like this kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@bilalahmed-fe5xt4 жыл бұрын
Sir can u solve this problem? Question Find n belongs to complex s.t for all x belong to real number this equation holds x^n (2x+n/x)=1
@Thidos4 жыл бұрын
And what about x
@berzerksharma4 жыл бұрын
B^-1 / 1 -b^-1 = 1 / b-1 ?
@peterklenner25634 жыл бұрын
I wonder how much of this solution actually started at the end with a plot of the integrand?
@michalbotor4 жыл бұрын
wow. i absolutely love it! 😍 also. lebesgue > riemann
@nablahnjr.67284 жыл бұрын
such a good integral
@jacobbills50024 жыл бұрын
Just watch this impressive Maths channel... it’s very nice like this kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@The_lenny4 жыл бұрын
Amazing...as always!
@shonakduggal38554 жыл бұрын
Please do some multivariable calculus
@sharpnova24 жыл бұрын
are you kidding? he has done a fuckton of multivariate calculus. up to and including differential forms chains etc etc
@jacobbills50024 жыл бұрын
Just watch this impressive Maths channel... it’s very nice like this kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@sharpnova24 жыл бұрын
isn't it 1/(b-1)?
@TheHuesSciTech4 жыл бұрын
Yes, see other comments.
@BDCOMBO4 жыл бұрын
Third, awesome geometric series link
@wehqwhqwqedqe5284 жыл бұрын
Beautiful
@randomcubing71064 жыл бұрын
FLOOR GANG OWW
@wesleydeng714 жыл бұрын
So, today's homework is to correct the last step.😃
@study51334 жыл бұрын
Very nice 👍
@AmenAmenzo4 жыл бұрын
This is amazing! I have a question though, shouldn't we carefully talk about the continuity of the function f on the interval [0,1) ? because if it is not continuous we aren't allowed to calculate the integral!
@AmenAmenzo4 жыл бұрын
and the jumps in values that f is doing from 1/b to 1/b² doesn't make it seem continuous out of the box
@ricardocavalcanti33434 жыл бұрын
Under certain conditions, continuity is a sufficient, but not necessary, condition for integrability of a function. (See any book on Calculus.)
@stephenbeck72224 жыл бұрын
Functions don’t have to be continuous to be integral. Michael never even directly calculated the value of the function at any of the endpoints. Because single points don’t contribute to the value of the integral.
@zachbills81124 жыл бұрын
There are clearly only countably many points of discontinuity, which makes the set of points of discontinuity measure zero, so they can't effect the integral.
@M-F-H4 жыл бұрын
@@zachbills8112 That's not true for the Riemann integral.
@seroujghazarian63433 жыл бұрын
It's 1/(b-1), not b/(b-1)
@djvalentedochp4 жыл бұрын
nice
@pineco744 жыл бұрын
squigle notation, make it happen
@abderrahmanyousfi55654 жыл бұрын
👍🏻👍🏻
@AlephThree4 жыл бұрын
Wow, that is a tough problem!
@Reza_Audio4 жыл бұрын
Michael, this time you were wrong about the good place to stop :(
@Bennici4 жыл бұрын
Just 24 hours ago I responded to someone jokingly remarking that you overdo these floor/inequality problems. I defended you, and now this. I am disappointed ;)
@stephenbeck72224 жыл бұрын
Who doesn’t love an infinite integral of a function with three different floor/ceiling operators?
@youssefallani64074 жыл бұрын
2nd comment good Michael penn
@jbtechcon74344 жыл бұрын
Should have ignored this viewer's suggestion. This is the first problem I've seen on this channel that I figured out at a glance and was a bit dismayed that it got made into a video.
@sporksto43724 жыл бұрын
Why is your forehead so wide?
@darthmath10714 жыл бұрын
because math. (stupid questions need stupid answers)