A wonderful floor integral connected to the Basel problem

  Рет қаралды 5,599

Maths 505

Maths 505

Күн бұрын

Пікірлер: 13
@BadlyOrganisedGenius
@BadlyOrganisedGenius Жыл бұрын
Great video! If you want to try some more integrals similar to this one, you could try: Integral from 0 to infinity of {e^x} -1/2 That's the fractional part of e^x, subtract 1/2 or alternatively: integral from 0 to infinity of ({x}/x)^2 Both have very interesting solution developments!
@maths_505
@maths_505 Жыл бұрын
Woah Awesome! I'll give em a shot
@MathematicFanatic
@MathematicFanatic Жыл бұрын
I did not do the substitution and looked at it as a sum of trapezoids of decreasing width from 0 to 1. This was much more elegant with the substitution because it is easy then to turn the floor into a sum. Very nice!
@MrWael1970
@MrWael1970 Жыл бұрын
Really clever solution. Thanks for your fascinating video.
@andy_lamax
@andy_lamax Жыл бұрын
Beautiful one this one was. Sooo elegant
@samning4141
@samning4141 Жыл бұрын
Pretty cool integral!
@GreenMeansGOF
@GreenMeansGOF Жыл бұрын
Here’s how I would solve it: Write it as the sum from n=1 to infinity of integral from 1/(n+1) to 1/n of the function. Then the floor function part is just n. So each integral equals n(x^2/2) from 1/(n+1) to 1/n. This simplifies to (2n+1)/(2n(n+1)^2). After doing partial fractions I also get the telescoping series and zeta(2) term. EDIT: Rather than combining using common denominator, we can split the n/(n+1)^2 term similar to how you did in the video.
@MathOrient
@MathOrient Жыл бұрын
Wow. Never had heard of Basel problem :)
@jonsmith8579
@jonsmith8579 Жыл бұрын
Math 505 I love you
@suryamgangwal8315
@suryamgangwal8315 Жыл бұрын
So the answer is eta(2)
@Unidentifying
@Unidentifying Жыл бұрын
bro check this, there might be some very mysterious monsters right there or in other forms en.wikipedia.org/wiki/Common_integrals_in_quantum_field_theory
A wild integral from the Romanian mathematical magazine
8:06
A surprisingly wonderful infinite series result
12:28
Maths 505
Рет қаралды 14 М.
За кого болели?😂
00:18
МЯТНАЯ ФАНТА
Рет қаралды 2,3 МЛН
Amazing remote control#devil  #lilith #funny #shorts
00:30
Devil Lilith
Рет қаралды 15 МЛН
бабл ти гель для душа // Eva mash
01:00
EVA mash
Рет қаралды 9 МЛН
A satisfying gamma function integral
11:40
Maths 505
Рет қаралды 10 М.
An interesting approach to the Basel problem!
19:26
Michael Penn
Рет қаралды 138 М.
MIT Integration Bee: How to Handle the Floor Function Like a Pro!
11:16
A breathtaking integration result!
15:56
Maths 505
Рет қаралды 12 М.
An easy solution to the Basel problem
17:52
Michael Penn
Рет қаралды 59 М.
A Beautiful Riemann Zeta Series
12:06
Maths 505
Рет қаралды 7 М.
Feynman's technique is INSANELY overpowered!!!
22:25
Maths 505
Рет қаралды 21 М.
Another ridiculously awesome integral with a beautiful result
14:11
Proof Of The Basel Problem
12:41
Mr H
Рет қаралды 52 М.
За кого болели?😂
00:18
МЯТНАЯ ФАНТА
Рет қаралды 2,3 МЛН