(Abstract Algebra 1) Least Common Multiple

  Рет қаралды 17,380

learnifyable

learnifyable

Күн бұрын

Пікірлер: 3
@dragonslayer98767
@dragonslayer98767 4 жыл бұрын
This channel is literally the only reason I'm passing Number Theory. I know these videos are old, but thank you for explaining your logic using actual words instead of a mess of symbolic logic.
@ratneshchandak9494
@ratneshchandak9494 7 жыл бұрын
In the ring of even integers , do 4 and 6 have a lcm and gcd?
@saumyojitdas4212
@saumyojitdas4212 4 жыл бұрын
let S = {x ∈ N : a|x and b|x}. Since a | |ab| and b | |ab| then |ab| ∈ S and therefore S not Equal to ∅. By well order principal, S has a smallest element m. Thus, a|m and b|m. This proves (1). To prove (2), we assume that c is an integer such that a|c and b|c. By the Division Algorithm there exist unique integers q and r such that c = mq + r, 0 ≤ r < m. Since a|c then c = aq1 for some q1 ∈ Z. Since a|m then m = aq2 for some q2 ∈ Z. Thus, aq1 = aqq2 + r or a(q1 −qq2) = r. This implies that a|r as q1-qq2 =r/a As q1,q2,q are all integers so integers closed under subtraction therefore "r is divided by a" **IS IT CORRECT UPTO THIS**??? A similar argument with b replacing a we find that b|r. If r > 0 then r ∈ S and this contradicts the definition of m as r will be the least no which gets divided by a and b . So we must have r = 0. Now one might say 0 is also a **Common** Multiple of a and b then why doesn't it gets included in S . That's why S 'set' contains only Natural nos .0 is not natural. So s contains least element 'm' Therefore, c = mq and m|c Is it correct
(Abstract Algebra 1) Congruence Modulo n
15:11
learnifyable
Рет қаралды 140 М.
(Abstract Algebra 1) Definition of a Group
12:25
learnifyable
Рет қаралды 152 М.
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
Group Definition (expanded) - Abstract Algebra
11:15
Socratica
Рет қаралды 909 М.
The Trig Hiding Inside the Factorials (And Harmonic Numbers)
19:06
Lines That Connect
Рет қаралды 173 М.
(Abstract Algebra 1) Greatest Common Divisor
11:48
learnifyable
Рет қаралды 34 М.
Every Subgroup of a Cyclic Group is Cyclic | Abstract Algebra
11:40
Wrath of Math
Рет қаралды 13 М.
Factoring Quadratics WITHOUT Guessing Product & Sum
20:01
JensenMath
Рет қаралды 377 М.
Extending the Harmonic Numbers to the Reals
15:17
Lines That Connect
Рет қаралды 353 М.
(Abstract Algebra 1) Relatively Prime Integers
14:08
learnifyable
Рет қаралды 26 М.
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН