Abstract Algebra 31: How do you write a product of permutations in disjoint cycle notation?

  Рет қаралды 5,127

Henry Adams

Henry Adams

Күн бұрын

Пікірлер: 8
@wallflower6942
@wallflower6942 2 жыл бұрын
Thank you!
@HenryAdamsMath
@HenryAdamsMath 2 жыл бұрын
You're welcome!
@japindersingh3848
@japindersingh3848 10 ай бұрын
Wonderful
@HenryAdamsMath
@HenryAdamsMath 9 ай бұрын
Thank you! Cheers!
@sayanjitb
@sayanjitb 3 жыл бұрын
Can you provide the proof this theorem?
@HenryAdamsMath
@HenryAdamsMath 3 жыл бұрын
Unfortunately this video is too short for a proof. But most textbooks in abstract algebra will contain a proof that any permutation can be written as a product of disjoint cycles! The main idea is that the process for doing so is not so different than the process for multiplying permutations together...
@miftahulanambinahmadyani4647
@miftahulanambinahmadyani4647 2 жыл бұрын
how about (1 2)(1 2)(3 4)?
@HenryAdamsMath
@HenryAdamsMath 2 жыл бұрын
Great question! The answer is (1 2)(1 2)(3 4) = (3 4), which you could also write as (1)(2)(3 4) if you wanted to, but it's better to write this as simply (3 4). Does that make sense? Note that 1 -> 2 -> 1, that 2 -> 1 -> 2, that 3-> 4, and that 4 -> 3, leaving us with the permutation (3 4). Another way to explain this would be to note that doing (1 2)(1 2) is the same as doing the identity, and so we are left with (3 4).
Abstract Algebra 63: Orders of elements in direct product groups
15:40
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН
The Cork Trick
4:23
Henry Adams
Рет қаралды 18 М.
Abstract Algebra 77: Subrings
14:15
Henry Adams
Рет қаралды 583
Abstract Algebra 78: The ring of Gaussian integers
16:02
Henry Adams
Рет қаралды 1,4 М.
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН