If my professor had explained it this way, I would have gotten it the first time. Thank you so much!!
@AdamPanagos5 жыл бұрын
You're welcome, thanks for watching and for the kind words.
@jan-willemreens90102 жыл бұрын
...Rarely found such an unambiguous explanation on Spanning Vectors on the net by using just a simple example! Thank you, Jan-W
@soomii58195 жыл бұрын
HOW COME DID I NOT FIND THIS CHANNEL FROM THE BEGINNING OF MY COURSE. THANK YOU, YOU MADE IT UNDERSTANDABLE, SIMPLER AND EASIER. I HAVE A MIDTERM TOMORROW WISH ME LUCK
@suleimanissack95095 жыл бұрын
haha you are not alone, feeling the same. I have a final tomorrow
@AdamPanagos5 жыл бұрын
Glad I could help, hope your midterm went well!
@rayinoz5 жыл бұрын
Your 4m26s video is better than 2hour lecture. Thanks
@AdamPanagos5 жыл бұрын
Thanks much, glad I could help! Best, Adam
@GenuinePeacefulTimes Жыл бұрын
Fantastic explanation! Thank you. This was just what I was looking for!
@AdamPanagos Жыл бұрын
Glad I could help, thanks for watching. Make sure to check out my website adampanagos.org for additional content (600+ videos) you might find helpful. Thanks, Adam
@aridennis44152 жыл бұрын
you lost a negative sign in there for V2.
@serinacat47817 жыл бұрын
very clear, I am your big fan
@aibdraco016 жыл бұрын
Thanks! U saved my GPA!
@AdamPanagos6 жыл бұрын
Glad I could help!
@DhanasekaranT-de4wz Жыл бұрын
Run this video at 0.75x speed to catch up with the Professor. Great explanation of the concept though.
@michchall8436 жыл бұрын
so clear! i honestly can't thank you enough
@AdamPanagos6 жыл бұрын
You're welcome, thanks for watching. Make sure to check out my website adampanagos.org for lots of additional content that you might find helpful.
@muhammadkumayl77617 жыл бұрын
The real MVP
@Megan-vi5uu7 жыл бұрын
this is so clear
@AdamPanagos7 жыл бұрын
Thanks!
@emmanuelmedina71476 жыл бұрын
I like your videos! Which app are you using for make them? Thank you!
@AdamPanagos6 жыл бұрын
I use an iPad app called Doceri (www.doceri.com) for most of my videos. This app lets you record all your handwriting ahead of time and use "breakpoints" to pause as needed. Once all the writing is down you can "play" the handwriting back while recording audio over it. I find this works much better than trying to write and talk at the same time. I'd definitely recommend checking out the app, I've found it very useful. Hope that helps!
@Med_Alzubaidi4 жыл бұрын
شكراً ^_^
@AdamPanagos4 жыл бұрын
You're welcome, thanks for watching!
@ijuthomas76284 жыл бұрын
I just with this can be downloaded 😂 bravo
@tedbantone33 жыл бұрын
Thanks
@kabeloramodike8 жыл бұрын
Good day I'm a bit confused - why does the augmented matrix at 1:00 have two -2 values?
@kabeloramodike8 жыл бұрын
OOOHH! Never mind - there was just a mistake when writing them in the previous line.
@AdamPanagos8 жыл бұрын
Yes, that's correct. Sorry for the error. I want ahead and added an annotation to note/correct the mistake. Thanks!
@peaceofheart59646 жыл бұрын
Then it means only linearly independent vectors can span any vector space ?
@AdamPanagos6 жыл бұрын
Not necessarily. You could have a large collection of dependent vectors that span a space. For instance, the vectors [1; 0], [0; 1], and [1; 1] span R2 since any vector in R2 can be written as a linear combination of these vectors. However, the vectors [1; 0] and [0; 1] also span R2 since again, any vector in R2 can be written as a linear combination of the vectors. In the first set of vectors, [1; 1] was clearly a linear combination of [1; 0] and [0; 1]. So, we had a set of dependent vectors that still spanned R2. In the second set of vectors, [1; 0] and [0; 1] are independent. We typically try to find an independent set of vectors to span a space since this will be the smallest set of vectors required. Hope that helps, Adam
@peaceofheart59646 жыл бұрын
@@AdamPanagos i got it ....... But tell me if we have to check for basis ...... We only need to see whether the vectors are L.I , no need to check for span.......right ?
@AdamPanagos6 жыл бұрын
No, the definition of a basis is a set of linearly independent vectors that spans the space. So, you do need to check for both L.I. and span. As another example, the vectors [1; 0; 0] and [0; 1; 0] are LI in R3, but they don't span R3 so they aren't a basis for R3.
@peaceofheart59646 жыл бұрын
@@AdamPanagos can u plz give example of three L.I vectors in R3 which dont span R3
@AdamPanagos6 жыл бұрын
That's not possible. If you have 3 linearly independent vectors in R3, then by definition they span R3. Hope that helps, Adam
@happyplant84395 жыл бұрын
what would happen if you solve the matrix and you get infinite solutions (like if X2 was a free variable)? would it span n-space or not? thanks:)
@tszkinwong61702 жыл бұрын
I guess it is a line in 2-d
@reytorrera2 жыл бұрын
Where’s the sound?
@zoem12949 жыл бұрын
nice
@AdamPanagos9 жыл бұрын
+Monica Xie Thanks!
@ijazkhanniazi8002 жыл бұрын
Thanks
@AdamPanagos2 жыл бұрын
You're very welcome, thanks for watching. Make sure to check out my website adampanagos.org for additional content (600+ videos) you might find helpful. Thanks, Adam.