This is amazing! Thank you so much for this video. I really appreciate how you emphasized the importance of stating what you're looking for (the preamble), what you're doing (the matrix you're writing and what it represents), and what the solution means (making sure you answer the question directly). Really really helpful. Thanks again!
@shoremiayomikunoluwadaunsi1826 Жыл бұрын
Swears!
@VictorNaftalyАй бұрын
Saaaaaaaame 😢 especially when English is not your first language... even finding the question itself is a big issue
@afailure8052 жыл бұрын
Just need a standard questions and a standard way to approach them and finally got you . Thank You .
@angelm730911 ай бұрын
holy after so much searching this is the only playlist i need for lin alg
@yizhang13023 жыл бұрын
I really appreciate your videos! You are a great great teacher! I hope you can have more videos.
@anujbhagat8151 Жыл бұрын
nicely explained. do not delete this video. may come back to this vid, if if i am ever in doubt , in future. thanks!
@sankoktas4203 жыл бұрын
Dude is a legend
@portillolopezjuanmanuel80793 жыл бұрын
Awesome explanation! Although my ears hurt at that YES! in min 9:41 hahaha
@scollyer.tuition9 ай бұрын
When I learnt linear algebra (a long time ago...) we used to write an augmented matrix with a vertical line separating the last column from the rest. This distinguishes it visually from the matrix of vectors which you use in the second type of span problem.
@lover-of-Shuhada7 ай бұрын
We still use it in linear...
@ObadaHakeem8 ай бұрын
It's 3:55 am 😢
@strangeworld49126 ай бұрын
4: 11 am 😢
@Ashish-v1d8i5 ай бұрын
Yes it is
@joshuaigbeneghu47605 ай бұрын
5 am
@dr.doctor88102 ай бұрын
12:05 am :{}
@bossbabyy_002 ай бұрын
3.38 am 😢
@lucci33192 жыл бұрын
best ever span and its questions explanation. thankkk youuu so much sir! love from India! keep posting more lectures of David. c lay book. thanks againnnnn! :))))))
@mosaif35909 ай бұрын
Sir I am from India ,this vdo is too helpful for us .❤❤❤❤
@Maxd-c4vАй бұрын
don't think anyone has clearly laid out why we are doing what we are doing as well as you. thank you. ;3
@elbaavril90499 ай бұрын
Thank you for your explanation. I had doubts about span but now I understand it. Greetings from Peru
@shoremiayomikunoluwadaunsi1826 Жыл бұрын
Good morning y'all. Thanks a lot sir! I have Linear Algebra exams this afternoon and this has really helped! Particular to the questions you solved and other versions in which the question may be written.
@williamnguyen7622 Жыл бұрын
thank you sooooo much ... just even differentiating the 2 types of questions helps so much
@himanshutiwari2601 Жыл бұрын
Great explanation dude❤
@ravindrabind150410 ай бұрын
My question is related to Example-2: "Is u4 in Span{u1, u2, u3} ?" : Is same way of asking same question? Solution: [[1, 0, 5/2, 0], [0,1,-1/2, 0], [0, 0, 0, 1]] may considered as following: x1 + 5/2*x3 = 0 x2 - 1/2*x3 = 0 0*x1 + 0*x2 + 0*x3 = 1==> 0 = 1, because System has no solution, So we may tell that System is inconsistent
@RaviPrakash-j4z3 ай бұрын
In the 2nd example do we need to convert it into row echolon form or reduced row echolon form
@ESHANHU-p3d10 ай бұрын
Hi in which video do you talk about the Spanning column theory? You said it was in lecture video 9 but that video is labled as Matrix Equations and I did not find you mentioning the spanning column theory in that video. Thx!
@HamblinMath10 ай бұрын
webspace.ship.edu/jehamb/ela/lecture09.html
@HamblinMath10 ай бұрын
This part of the Lecture 9 video: kzbin.info/www/bejne/harUgJmYmqqbgpI
@ESHANHU-p3d10 ай бұрын
@@HamblinMath Thank you so much!
@nadirbelkebir3 Жыл бұрын
Great video man ! Helped me a lot, wish me luck on my quiz !
@xoppa096 ай бұрын
Very useful video. When you say row reduce the matrix , is it sufficient to be in 'echelon form' or does it have to be in 'reduced echelon form' which is the unique reduced matrix. also books seem to vary on echelon form, some require the pivots to be scaled to 1 while others do not require it.
@adamjahani44946 ай бұрын
At 4:21 im so confused. Can we use a coeffient matrix instead of an augment matrix? Becuz I have that equal sign or vertical line between my 2nd and 3rd column. I can’t seem to get the row reduced echelon form unless I do a coeffient matrix without that line. I’m stupid idk what I’m doing. I’m learning this for a summer class and we are going way too fast. Linear algebra in a month feels impossible
@HamblinMath6 ай бұрын
No, because the question here relates to the specific vector b. I recommend watching the "span" lecture video for addition explanations: kzbin.info/www/bejne/p6m1l4mZf7qcnq8si=OtHWMIhJjQ5BSh92
@Goal_baller9 ай бұрын
Perfect
@TECHNICALBEAST2020 Жыл бұрын
man really thank you lots of love from india
@sumitbhale36452 жыл бұрын
👍👍Sir explanation which clears all my doubts
@tpsspace7397Ай бұрын
4 vectors cannot span R3
@HamblinMathАй бұрын
@@tpsspace7397 False
@aan84743 жыл бұрын
wonderfully explained!!
@araizhaisanbek591211 ай бұрын
That’s really helped to understand! Thank you
@AngelZangata5 ай бұрын
You are such a good❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ teacher
@Hayat_kh2022 жыл бұрын
idk if i understood this right but when each row has a pivot it DOES span R^n/set of vectors but when a row is missing a pivot it doesn't span? or does it depend on what the question is asking
@HamblinMath2 жыл бұрын
You need to be careful when using the word "it." If you have some vectors in R^n and you want to know whether they span R^n, construct a matrix with those vectors as its columns. If that matrix has a pivot in every row, then those vectors span R^n. If that matrix does not have a pivot in every row, then those vectors do not span R^n.
@kusumrao58943 жыл бұрын
its really amazing sir🥰🥰🥰
@ahazizulhakimsumon1870 Жыл бұрын
Love your work man🤛
@Rayyan-mo8gv Жыл бұрын
Awesome video
@mohammadk12 жыл бұрын
Thank you habibi for helping me :)
@mohammadsaad3037 Жыл бұрын
spanning column theorm? what are the rules for it other than the 2 shown in the video. I cant find it on google. All I keep seeing is the "Spanning Set Theorm"
@HamblinMath Жыл бұрын
The Spanning Columns Theorem (as I call it) states that the columns of an n x m matrix span R^n if and only if the matrix has a pivot in every row.
@miksun_matematiikka Жыл бұрын
Thank you, thank you and thank you one more time
@miugirl24 Жыл бұрын
your videos are quite helpful but they would be even better if you took some extra time and went through row reducing the matrix in my opinion. thanks for ur effort !!!
@HamblinMath Жыл бұрын
You can find a full breakdown of the row-reduction process in this video: kzbin.info/www/bejne/bWPcpKitqb50ZsU
@donmoore267626713 жыл бұрын
Awesome instruction.
@starliaghtsz84002 жыл бұрын
i think you can say that {u1, u2, ......., un} spans Rn as long as no vectors are multiples of each other, it works for R2 and R3 and logic suggests it should keep working right?
@HamblinMath2 жыл бұрын
Actually, it *doesn't* work in R3. Consider u1 = (1,0,0), u2 = (0,1,0), and u3 = (1,1,0). None of these vectors is a multiple of another, but they don't span R3.
@starliaghtsz84002 жыл бұрын
@@HamblinMath ooooh, yeah so that zero at the z coordinate means there is no pivot for the third row right?
@starliaghtsz84002 жыл бұрын
component*
@HamblinMath2 жыл бұрын
@@starliaghtsz8400 Just think about it like this: With the example I gave above, the span of {u1, u2, u3} can't be all of R3 because it doesn't contain vectors like (1, 2, 3) that have a non-zero third entry.
@starliaghtsz84002 жыл бұрын
@@HamblinMath yeah thats what i was trying to say, ty
@mikesgarage182 жыл бұрын
An instance of linear independence in each dimension of R^3 implies a spanning set of vectors. Right?
@HamblinMath2 жыл бұрын
I'm not sure I understand your question. If you have a set of three linearly independent vectors in R^3, then that set must span R^3. The reason has to do with the idea of "dimension," which you can learn more about in this lecture: kzbin.info/www/bejne/jnq9qZ-Eq6Z0oNE
@عالممختلف-ذ6ظ2 жыл бұрын
teacher can you tell me how to transforme from augmented to row reduced i know the steps but when i try i didnt the result like you get it
@mukhtarsuleman52912 жыл бұрын
this helped a bunch, thanks alot
@theojunming2 жыл бұрын
So for the set of vectors to span R3 it has to has a rank of 3 ? Correct me if im wrong tysm. Also, since each row is linearly independent of each other , can i say that they form a basis for R3 ?
@mrjichoone6253 Жыл бұрын
yes
@amar_1234_paul Жыл бұрын
but in the scond question z the rank of augmented matrix and normal matrix is not same then how can we say that it spans?
@micah2936 Жыл бұрын
Should I watch this after lecture 9?
@irenebernardi3954 Жыл бұрын
Hi! do we know why sometimes the lecturer row reduces to simple echelon form, whereas sometimes all the way to reduced echelon form?
@HamblinMath Жыл бұрын
Some questions can be answered with just echelon form. When we're doing row-reduction by hand, it's less work for us to get to echelon form rather than the reduced echelon form.
@irenebernardi3954 Жыл бұрын
@@HamblinMath ok makes sense! Also thank you very much for all of your content, this is the first time algebra makes sense to me and that's invaluable
@chrisdalen1722 Жыл бұрын
Why does a pivot in the last collum mean no solution?
@HamblinMath Жыл бұрын
kzbin.info/www/bejne/oXXFc4d8q7aan8k
@capybara-k6g Жыл бұрын
for first example I thought it was in the span: 2V1 + V2 = b b is a combination of V1 and V2, therefor b is in span{V1V2}
@HamblinMath Жыл бұрын
It's not true that 2v_1 + v_2 = b. Check *all* the entries carefully!
@capybara-k6g Жыл бұрын
@@HamblinMath ah gotcha, thanks!
@Joshua-rk7bl2 жыл бұрын
incredible
@stopconfusions53703 ай бұрын
What’s a pivot
@flidoofficial1848 Жыл бұрын
subscribed and here to stay
@kodarkma74442 жыл бұрын
The last column has a pivot, what does it mean sir????
@HamblinMath2 жыл бұрын
kzbin.info/www/bejne/m4mvaaBua5qEm68
@mrdawne52939 ай бұрын
The 2nd example doesn't make sense cause if we look at the last row . It's like saying 0x1+0x2+0x3=1 ?
@HamblinMath9 ай бұрын
Incorrect. The matrix being row-reduced is not an augmented matrix. You may want to watch this video to better understand the Spanning Columns Theorem: kzbin.info/www/bejne/harUgJmYmqqbgpIsi=t9Vt4rLewr9r6xnJ
@denuwanvlog11 ай бұрын
Perfect! ❤️
@theojunming2 жыл бұрын
if i have multiple solution, can i still say that is b in span{v1.v2}?
@HamblinMath2 жыл бұрын
If the equation x1 v1 + x2 v2 = b has one or more solutions, then b is in Span{v1, v2}. If there are multiple solutions, this just means that b can be "built" out of v1 and v2 in multiple ways.
@vikasbansal41803 жыл бұрын
Thank u sir for questions
@drashysesodia5122 жыл бұрын
Thanks a lot sir .
@Goal_baller9 ай бұрын
3yr later, I am here
@rajgurubhosale86804 ай бұрын
thanksss mannn
@mrdawne52939 ай бұрын
Doesn't the 1st example have infinitely many solutions ?
@ObadaHakeem8 ай бұрын
@@HamblinMath why do we say it's many solution and not unique? We got values for x1 and x 2 and x3 and x4 doesn't exist cuz we have 3 columns
@HamblinMath8 ай бұрын
@@ObadaHakeem My previous comment was in error. The equation x_1 v_1 + x_2 v_2 = b has no solutions because the augmented matrix has a pivot in the last column. There is no "x_3" or "x_4" in this question; the vectors have 4 *entries* but that doesn't mean there are four variables.