AI Hardware, Explained.

  Рет қаралды 27,596

a16z

a16z

Күн бұрын

Пікірлер: 42
@a16z
@a16z Жыл бұрын
For a sneak peek into part 2 and 3, they're already live on our podcast feed! Animated explainers coming soon. a16z.simplecast.com/
@cmichael981
@cmichael981 11 ай бұрын
doesn't look like part 2/3 are up on the podcast feed (anymore at least) - any chance those video explainers are coming out still?
@a16z
@a16z Жыл бұрын
Timestamps: 00:00 - AI terminology and technology 03:54 - Chips, semiconductors, servers, and compute 05:07 - CPUs vs GPUs 06:16 - Future architecture and performance 07:12 -The hardware ecosystem 09:20 - Software optimizations 11:45 -What do we expect for the future? 14:25 - Sneak peek into the series
@Inclinant
@Inclinant 8 ай бұрын
In the usual case of floating-point numbers being represented at 32-bit, is this why quantization for LLM models can be so much smaller at around 4-bit for ExLlama and making it so much easier to fit models inside the lower amounts of VRAM that consumer GPUs have? Incredible video, interviewer ask really though provoking and relevant questions while the interviewee is extremely knowledgeable as well. It's broken down so well too! Also, extremely grateful to a16z for supporting the The Bloke's work in LLM quantization! High quality quantization and simplified instructions makes LLMs so much easier to use for the average joe. Thanks for creating this video.
@msclrhd
@msclrhd 5 ай бұрын
It's a trade-off between accuracy and space/performance (i.e. being able to fit the model on local hardware). A 1-bit number could represent (0, 1) or (0, 0.5) as it only has 2 values. With 2 bits you can store 4 values, so you could represent (0, 1, 2, 3), signed values (-2, -1, 0, 1), float between 0 and 1 (0, 0.25, 0.50, 0.75), etc. depending on the representation. The more bits you have the better the range (minimum, maximum) of values you can store, and the precision (gap or distance) between each value. Ideally you want enough bits to keep the weights of the model as close to their trained values so you don't significantly alter the behaviour of the network. Generally a quantization of 6-8 offers comparable accuracy (perplexity score) with the original, and below that you get an exponential degredation in accuracy, with below 4-bits being far worse.
@NarsingRaoschoolknot
@NarsingRaoschoolknot 7 ай бұрын
Well done, very clean and clear. Love your simplicity
@jack_fischer
@jack_fischer Жыл бұрын
The music is very distracting. Please tone down in the future
@lnebres
@lnebres Жыл бұрын
An excellent primer for beginners in the field.
@Matrix1Gamer
@Matrix1Gamer 9 ай бұрын
Guido Appenzeller is speaking my language. the lithography of chips are shrinking while consuming lots of power. Parallel computing is definitely going to be widely adopted going forward. Risc-V might replace x86 architecture.
@AlexHirschMusic
@AlexHirschMusic 10 ай бұрын
This is highly informative and easy to understand. As an idiot, I really appreciate that a lot.
@TINTUHD
@TINTUHD Жыл бұрын
Great video. Tip of the computation innovation
@lerwenliu9263
@lerwenliu9263 9 ай бұрын
Love this Channel! Could we also look at the hunger for energy consumption and the impact for climate change?
@AnthatiKhasim-i1e
@AnthatiKhasim-i1e 3 ай бұрын
"To remain competitive, large companies must integrate AI into their supply chain management, optimizing logistics, reducing costs, and minimizing waste."
@kymtoobe
@kymtoobe 4 ай бұрын
This is a good video.
@adithyan_ai
@adithyan_ai Жыл бұрын
Incredibly useful!! Thanks.
@IAMNOTRANA
@IAMNOTRANA Жыл бұрын
No wonder nvidia don't care about consumer GPU anymore.
@stachowi
@stachowi 11 ай бұрын
Yup, cash grab
@chenellson489
@chenellson489 Жыл бұрын
See you at NY Tech Week
@Doggieluv25
@Doggieluv25 Жыл бұрын
Really helpful thank you!
@nvr1618
@nvr1618 Жыл бұрын
Excellent video. Thank you and well done
@billp37abq
@billp37abq 2 ай бұрын
This video makes clear WHY DSP [digital signal processing] chips were implementing sum{a[i]*b[i]} in hardware!
@vai47
@vai47 Жыл бұрын
Older Vox style animations FTW!
@dinoscheidt
@dinoscheidt Жыл бұрын
1:24 Ehm… I would like to know, what camera and lens/focal length you use to match the boom arm and background bokeh so perfectly 🤐
@StephSmithio
@StephSmithio Жыл бұрын
I use the Sony a7iv camera with a Sony FE 35mm F1.4 lens! I should note that good lighting and painting the background dark does wonders though too
@stachowi
@stachowi 11 ай бұрын
This was very good
@LeveragedFinance
@LeveragedFinance Жыл бұрын
Huang's law
@billp37abq
@billp37abq 3 ай бұрын
AI and cloud computing face power supply issue as cryptocurrencies? "Cryptocurrency mining, mostly for Bitcoin, draws up to 2,600 megawatts from the regional power grid-about the same as the city of Austin."
@thirukaruna7469
@thirukaruna7469 Жыл бұрын
Good one, Thx.!
@LeveragedFinance
@LeveragedFinance Жыл бұрын
Great job
@SynthoidSounds
@SynthoidSounds Жыл бұрын
A slightly different way of looking at Moore's Law is not about being "dead", but rather becoming irrelevant. Quantum computing operates very differently than binary digital computation, it's irrelevant to compare these two separate domains in terms of "how many transistors" can fit into a 2D region of space, or a FOPS performance. Aside from extreme parallelism available in QC, the next stage from "here" is in optical computing, utilizing photons instead of electrons as the computational mechanism. Also, scalable analog computing ICs (for AI engines) are being developed (IBM for example) . . . Moore's Law isn't relevant in any of these.
@MegaVin99
@MegaVin99 11 ай бұрын
Thanks for video but 4 mins before getting to any details in a 15 min video?
@gracekim2863
@gracekim2863 Жыл бұрын
Back to School Giveaway
@joshuatruong2001
@joshuatruong2001 Жыл бұрын
The Render network token solves this
@shwiftymemelord261
@shwiftymemelord261 3 ай бұрын
it would be so cool if this main speaker was a clone
@RambleStorm
@RambleStorm Ай бұрын
Geforce 256 aka GeForce 1 wasn't even Nvidia's first gpu let alone the first ever PC gpu... 😅😂
@antt8550
@antt8550 Жыл бұрын
The future
@billp37abq
@billp37abq 2 ай бұрын
AI power consumption has doomed it to failure before it has started? kzbin.info/www/bejne/ooPcZoavbqqfmNk
@mr.wrongthink.1325
@mr.wrongthink.1325 Ай бұрын
The music is unnecessary and actually annoying.
Chasing Silicon: The Race for GPUs
22:41
a16z
Рет қаралды 9 М.
AI Hardware w/ Jim Keller
33:29
Tenstorrent
Рет қаралды 37 М.
Perfect Pitch Challenge? Easy! 🎤😎| Free Fire Official
00:13
Garena Free Fire Global
Рет қаралды 90 МЛН
Кто круче, как думаешь?
00:44
МЯТНАЯ ФАНТА
Рет қаралды 4,4 МЛН
Disrespect or Respect 💔❤️
00:27
Thiago Productions
Рет қаралды 38 МЛН
How do Graphics Cards Work?  Exploring GPU Architecture
28:30
Branch Education
Рет қаралды 1,6 МЛН
What's the future for generative AI? - The Turing Lectures with Mike Wooldridge
1:00:59
Deep-dive into the AI Hardware of ChatGPT
20:15
High Yield
Рет қаралды 317 М.
The moment we stopped understanding AI [AlexNet]
17:38
Welch Labs
Рет қаралды 1,3 МЛН
Do we really need NPUs now?
15:30
TechAltar
Рет қаралды 742 М.
AI’s Hardware Problem
16:47
Asianometry
Рет қаралды 632 М.
Nvidia Founder and CEO Jensen Huang on the AI revolution
29:44
Goldman Sachs
Рет қаралды 127 М.
Jensen Huang of Nvidia on the Future of A.I. | DealBook Summit 2023
28:10
New York Times Events
Рет қаралды 799 М.
The Turing Lectures: The future of generative AI
1:37:37
The Alan Turing Institute
Рет қаралды 620 М.
Perfect Pitch Challenge? Easy! 🎤😎| Free Fire Official
00:13
Garena Free Fire Global
Рет қаралды 90 МЛН