Thanks for watching! If you have any resources you'd like to recommend, feel free to comment them down below. If you'd like to continue your learning, I recently started a math / machine learning newsletter! Every week, I send you the best links (e.g: videos, blogs, articles) to learn topics in math and ML. Sign up here: forms.gle/Rt1f5StAj3yZtakE6
@caspermadlener41916 ай бұрын
12:05 Little spelling mistake, but Reimann is not going to mind. I recommend KZbinr Richard Borcherds, who has multiple series about these.
@Mad_mathematician2246 ай бұрын
𝘽𝙧𝙤𝙩𝙝𝙚𝙧, 𝙄 𝙬𝙖𝙣𝙩 𝙩𝙤 𝙡𝙚𝙖𝙧𝙣 𝘿𝙄𝙁𝙁𝙀𝙍𝙀𝙉𝙏𝙄𝘼𝙇 𝙂𝙀𝙊𝙈𝙀𝙏𝙍𝙔...... 𝙖𝙣𝙙 due to absence of right guider, I am unable to learn it...... I am from India🇮🇳....... Where are you from?
@deadlock_problem6 ай бұрын
@@Mad_mathematician224 bro what are you begging for, you have access to the internet. Courses: google -> differential geometry -> MIT OpenCourseWare Textbooks: google + pdf -> download links -> books Simple as
@just.a.random.ava.-_-6 ай бұрын
Dude just wanted to thank you soo much for your videos, they've helped me gain a profound interest in maths at higher levels even though I'm still in school lol. Also, I'd love yo here your thoughts about topics like other Millienuem(spelling wrong ik) problems or even the Langlands Project. Thanks again for everything!
@Aleph06 ай бұрын
@@just.a.random.ava.-_- I'm very glad to hear that! There's definitely more number theory / Langlands videos + Millennium problem videos coming up soon, so keep your eyes peeled :)
@timothypulliam21776 ай бұрын
The reason exp(1/Z) contains an essential singularity is, if you expand the function as a Taylor series, you will get infinitely many powers of (1/Z). In essence, the singularity can't be removed by multiplying by Z. Therefore, it is "essential"
@DanGRV6 ай бұрын
Another fact about essential singularities: A function with an essential singularity takes all complex values (or all complex values except one value) infinitely many times in every open neighborhood of the essential singularity (Picard's Great Theorem)
@EebstertheGreat6 ай бұрын
Or more directly, as z goes to 0 from the positive real direction, 1/exp(1/z) goes to 0, but as z goes to 0 from the negative real direction, 1/exp(1/z) goes to infinity. So 1/exp(1/z) can't be continuously extended to 0 even in the real line, let alone the complex plane.
@peabrainiac63706 ай бұрын
@@EebstertheGreat that's true of functions with poles like 1/z^n at 0 too. The point is that the singularity exp(1/z) has at 0 is not that simple, in the sense that it can't be removed by multiplying it with some z^n - hence the name essential.
@Aleph06 ай бұрын
Love this explanation! It's "essential" because you can't get rid of it by multiplying by Z. Brilliant.
@TheRevAlokSingh6 ай бұрын
This def includes removable and poles of any order, just number of terms that diverge, and 0 if removable
@SGin010106 ай бұрын
it’s the main argument of my thesis, I’m so happy to see a video about Riemann Surface ❤️
@mohammedbelgoumri6 ай бұрын
No better way to start a day than an aleph0 upload
@diaz68746 ай бұрын
What time zone are you in?
@mohammedbelgoumri6 ай бұрын
@@diaz6874 Australia, was 6am for me when this dropped
@mohammedbelgoumri6 ай бұрын
@@diaz6874 Australia, was 6 am for me when this dropped
@brendawilliams80626 ай бұрын
@@diaz6874 glue 6 am to 2 pm. Geometry in algebraic disguise.
@dougdimmedome55526 ай бұрын
One of my favorite things in complex analysis was just seeing that elliptical curve come out of nowhere with the Weierstrass p-function, I felt like I was seeing a fraction of what Wiles saw every day while proving the modularity theorem enough to prove Fermat’s last conjecture.
@hyperduality28386 ай бұрын
Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@robertcrumplin5 ай бұрын
@hybmnzz2658 I don't think I'd say Falting's theorem says anything much about interesting group laws, but maybe I see why you ask this question. Here are some simpler points about group laws you can say. The degree-genus formula tells you that for degree >4 the genus of the curve in P^2 is atleast 3 (which in particular is > 1). If the curve is additionally defined over the rationals, the K-points C(K) are finite. So if C were a group scheme defined over Q, then C(K) would have to be a finite subgroup. There is no obvious reason this gives a contradiction though, but actually theres a much easier reason why any 1-dimensional group scheme over Q is actually genus 1: The group scheme structure allows you to give a trivialisation of the tangent bundle (as the translation action of C on itself is transitive on Q-points). The only smooth connected curve over Q with trivial tangent bundle is genus 1, since the degree of the tangent bundle is 2g - 2.
@mauro.4Ай бұрын
@@hyperduality2838actually the co in cosine is for cotermenal angle sine so sine (x+90)
@StratosFair5 ай бұрын
Aleph 0 is back with yet another banger ! Nah but seriously as a grad student in applied analysis/probability/statistics and little knowledge of pure maths, i enjoy these videos so much as they give me a glimpse of the beauty of what's on "the other side". Please keep them coming !
@jakobr_6 ай бұрын
Riemann’s existence theorem: “Bernhard Riemann exists.”
@samiaario82916 ай бұрын
Do one on Donaldson theory!
@billcook47685 ай бұрын
Uh, I don’t know how to break this to you… but about Riemann existing…
@billcook47685 ай бұрын
Now can you explain Riemann’s mapping theorem.
@jakobr_5 ай бұрын
@@billcook4768 Riemann’s mapping theorem: Bernhard Riemann was a cartographer. (This theorem is known to be false)
@VarunPatwal3 ай бұрын
@@jakobr_😂😂😂
@dimitriskliros6 ай бұрын
i don’t often comment on uploaded videos, but i feel this video is so good that i just wanted to say thank you, and keep up the good work.
@omargaber31226 ай бұрын
When the world needs him he will come back
@StCharlos6 ай бұрын
When the world needs someone, Surfshark brings him back
@wilderuhl34506 ай бұрын
I needed this video today and he didn’t disappoint.
@phenixorbitall39176 ай бұрын
Amen
@omargaber31226 ай бұрын
😂 @@phenixorbitall3917
@omargaber31226 ай бұрын
😂@@phenixorbitall3917
@primenumberbuster4046 ай бұрын
Finally, more Algebraic Geometry content
@hyperduality28386 ай бұрын
Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@SultanLaxeby5 ай бұрын
This is an extremely good motivation for the elliptic curve equation(s) that I see everwhere, and a very nice explanation why complex tori are elliptic curves (and not just the other way around)! I'm a bit baffled by your way to write a zeta though...
@jogloran6 ай бұрын
I love how you give equal time to "zee" and "zed" 😅
@acidnik006 ай бұрын
9:00 sick blotter design, bro :)
@macoson6 ай бұрын
I've heard that blotter with Weierstrass elliptic function on it, kicks stronger
@jenbanim6 ай бұрын
It'll have you seeing a point at infinity
@gnaistvlogs5 ай бұрын
This is one of my favorite results in mathematics. I used this categorical equivalence (along with the equivalence to algebraic function fields) in my master's thesis on prime Galois coverings of the Riemann sphere back in 2007.
@kernel88036 ай бұрын
Love the channel and the content, no pressure, but I have been eagerly awaiting the course that you talked about developing/releasing.
@hyperduality28386 ай бұрын
Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@magnus0re6 ай бұрын
Been waiting for a new video from you. Just checked a few days ago. And there it is. I'm already intrigued.
@GhostOnTheHalfShell6 ай бұрын
my math is such a rust bucket. i need to dust off a bunch of old books, but then recapitulate several semesters just to be sure i had enough of the definitions fixed in my head
@MrMctastics6 ай бұрын
Get some flashcards and set aside an hour a day. Start with something you love. You got it buddy ❤️
@xyzct6 ай бұрын
Check out 3Blue1Brown
@Npvsp6 ай бұрын
I'm a simple person: first I like the new Aleph0 video, then I watch it (even hours later). Trust is everything!
@Npvsp6 ай бұрын
@user-ky5dy5hl4d I ignore what you mean, but considering it’s Aleph0, he has all my trust for he is a brilliant mathematician.
@lukiatiyah-singer51006 ай бұрын
Thanks for the video, very well explained! On this topic, I found the book by Serge Lang on elliptic functions very helpful, but also Gunning's lectures on Riemann surfaces for every thing beyond genus 1
@ianmichael57686 ай бұрын
Respect. The printed cut outs are beautiful.
@beardymonger6 ай бұрын
Great amazing content, I admire the effort that went into making this!!! I would add a short section about the inversion 1/z (with animation) to explain the essential singularity at infinity.
@hyperduality28386 ай бұрын
Exponentials are dual to logarithms. Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@Zosso-16186 ай бұрын
Oh I was just watching your video on the continuum hypothesis! Nice to see you back!
@hyperduality28386 ай бұрын
Continuous (classical) is dual to discrete (quantum). Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@ErkaaJ6 ай бұрын
I would love a video on GAGA theorem (Serre), which is really a continuation on the topic in this. It is remarkable how Riemann's work in the late 1800's is the foundation for modern algebraic geometry.
@Aleph05 ай бұрын
That’s a great suggestion. GAGA is definitely on the list for a future video!
@randomchannel-px6ho6 ай бұрын
Something that gets lost in Riemann's immense contribution to humanity was the shockingly forward thinking idea he introduced that the microscopic spacetime may be nothing like the 3 + 1 we know so well, over a hundred years before Dirac postulated the same thing which is basically where theoretical physics is now.
@hyperduality28386 ай бұрын
Space is dual to time -- Einstein. Time dilation is dual to length contraction -- Einstein, special relativity. Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@Roxas99Yami6 ай бұрын
Honey wake up, Aleph 0 just uploaded a new video
@antonius8721336 ай бұрын
Great video! I would love to hear some more about this Weierstrass p function.
@tommytwotimes28386 ай бұрын
love your content. Please make a video about riemann hypotheses or more about the millenium problems. The biggest unsolved problems in math
@hyperduality28386 ай бұрын
Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@Rozenkrantzz6 ай бұрын
Absolute banger as always. I'm interested in making educational math content as well and I've been using you as inspiration for my pedagogy.
@brian.westersauce6 ай бұрын
Any chance your name is Steven
@primenumberbuster4046 ай бұрын
@@brian.westersauce no his name is Brian.
@Rozenkrantzz6 ай бұрын
@@primenumberbuster404 no his name is buster
@hyperduality28386 ай бұрын
Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@headlibrarian19966 ай бұрын
I don’t know if it’s important, but in the complex torus example the interval is first written as closed [0,2pi] and later in the example it is written as open [0,2pi).
@1chillehotdogpro1996 ай бұрын
"Sorry not now babe Aleph 0 just dropped"
@Cosmalano6 ай бұрын
I recently learned Riemann surfaces are used in string theory which I find really cool. I also am 90% sure they come up in the 2-spinor formalism of GR but it’s never clicked for me
@hyperduality28386 ай бұрын
Action is dual to reaction -- Lagrangians are dual, forces are dual. Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@-minushyphen1two3796 ай бұрын
At 3:20, doesn’t the zeta function have an essential singularity at infinity? Edit: Oh, you meant that the functions on the left are *not* meromorphic at infinity
@hyperduality28386 ай бұрын
Points are dual to lines -- the principle of duality in geometry. Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@Shape49956 ай бұрын
Great to see more algebraic geometry!
@hanzhang35896 ай бұрын
10:00 Probably a really dumb question, but how does a square which is 2D become an algebraic curve which is 1D?
@nucreation44846 ай бұрын
I think it's because the curve on the right is actually in C2. Like how in the previous example t from the interval which is in R gets mapped to the circle in R2 by associating the points (x,y) on the circle with t on the interval via the trig functions ie x= cos t and y = sin t. ... In the same way, each complex pair (X, Y) on the "curve" described on the right is associated with a complex number z in the square via the functions X = P(z) and Y = P'(z).
@justanormalyoutubeuser386812 күн бұрын
The curve is 1D over the complex numbers, which translates to 2D on the real numbers.
@giovannironchi53326 ай бұрын
I would like to undersrand better if the etale space of the sheaf of holomorphic functions on a Riemann surface give another Riemann surface
@angeldude1016 ай бұрын
The fact that there _is_ a connection between complex numbers and geometry isn't shocking at all (a very obvious connection is spinny), but I can say that I wasn't aware of this particular connection.
@hyperduality28386 ай бұрын
Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@carlosperezfranza58646 ай бұрын
Nice, could you make something embracing all the symmetries of our beloved R3 smooth sphere?
@laposta-eu6 ай бұрын
Beautiful animations but I would have liked more explanation of the basic concepts.
@xyzct6 ай бұрын
"Complex analysis is algebraic geometry in disguise." Given that analytic functions can be described as glorified polynomials, that kind of gave a hint. (Am I seeing that correctly?)
@chobes18276 ай бұрын
You're exactly right about that. The big idea is really that if you look at analytic and meromorphic functions ("glorified" polynomials and rational functions respectively) that satisfy very natural conditions, they turn out to be polynomial or rational.
@xyzct6 ай бұрын
@@chobes1827, thanks! Wow, what a fun video. It's always so satisfying to see new connections that are sitting _right there._
@hyperduality28386 ай бұрын
Space is dual to time -- Einstein. Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@xyzct6 ай бұрын
@@hyperduality2838, it's you!!! You and I have had many great conversations across KZbin! I actually have a spreadsheet where I have kept a running list of your awesome examples of duality. I have found them incredibly profound ... and helpful.
@quiversky42926 ай бұрын
Very interesting! I never got into complex analysis in uni. Can I suggest you just stick with Canadian ‘zed’? I think American viewers will understand :)
@whatitmeans6 ай бұрын
lets say z=x+iy... Where relations like f(z) = e^(z^2/(z^2-1)) unitstep(1-z^2) fall inside complex analysis? If y=0 then f(z) it is a smooth bump function, which are not analytic so at least in the real line f(z) cannot be represented as a power series, which rule it out of conventional complex calculus (this is why I call it a relation instead of a function). There is a branch of mathematics that study this kind of complex-valued objects?
@chobes18276 ай бұрын
This kind of thing falls more into the realms of real analysis in multiple dimensions. Functions that aren't analytic aren't complex-differentiable. You may be able to define such functions using complex numbers, but the algebraic structure of the complex numbers isn't really relevant for understanding these functions. It's more useful to rewrite these functions from R^2 to R^2 and study them using tools from real analysis (which includes standard multivariable calculus).
@whatitmeans6 ай бұрын
@@chobes1827 and how it is done? do you know how this kind of analysis is named?... At least for me is not obvious how you will make happen in R^2 all the oscillating effects that rises from Euler identity e^(it)=cos(t)+i sin(t) without it, my example f(z) it is just a 2D smooth bump function, but I think it is not his complex behaviour since in their exponent the z^2 term will left some terms dependent in the imaginary unit "i", leading to oscillating behaviour
@hyperduality28386 ай бұрын
Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@chobes18276 ай бұрын
@whatitmeans You basically just write that g((x,y)) = (Re(f(x+iy), Im(f(x+iy)) and then study g as a map from R^2 to R^2. Points in the complex plane are still just pairs of two real numbers, and you can always identify them as such. If you study some complex analysis, you'll learn how this works because you need to think about complex functions this way in order to derive and use the Cauchy-Riemann equations. All of the oscillating behavior ends up being expressed with rotation matrices, and it's all completely doable despite the expressions being a bit messier. For example, if r is |z| and theta is the angle formed between z and the positive real axis, then e^iz becomes e^r * rotation by theta as a map from R^2 to R^2.
@kyspace10246 ай бұрын
Kind of hope you could maintain the handwriting style. You in fact inspired me to do all-handwriting demos.
@kgangadhar53896 ай бұрын
Can you please add Thanks option to your videos.
@cycklist6 ай бұрын
Thank you for saying zed :)
@MattHudsonAtx5 ай бұрын
neat to see Dhruv's name again in an unexpected place
@АлексейВладимиров-щ8ъ6 ай бұрын
Great video Do you have any plans to make a video about p vs np?
@sahebmohapatra47563 ай бұрын
A minor and not-so-important correction: the weirstrass p function and its derivative satisfy a polynomial equation with a constant term.
@carlosgaspar84476 ай бұрын
at 5:00 the unit circle is labelled at points +/-1 and +/-I. wouldn't it make more sense if it was +/-1 and +/-i^2? thx.
@kumargupta71496 ай бұрын
I wonder content of this type is also available love your content ❤.
@chianchen7765 ай бұрын
My first time watching produced a question that, isn’t then the conclusion made in the end (analytical object can be bridged to algebraic perspective) requires the step glossed over in “projective complex space” CP2 thing, that dealt with how 0 is mapped? I might watch the second time but maybe someone was impressed with the same question as me in the comment section.
@Jaylooker6 ай бұрын
I wonder how Riemann’s existence theorem relates to the circle method
@Happy_Abe6 ай бұрын
Why not just define f(infinity) to be the limit as z approaches the point at infinity of f(z) where we can take |z| approaching infinity in the real case and consider all possible paths of z that do this. Why would these two limits not be the same when they exist?
@SydiusVideo5 ай бұрын
Thank you!
@DiegoMathemagician5 ай бұрын
12:15 it says Reimann but it should be Riemann. Other than that, thank you for the great video :D
@phnml84406 ай бұрын
Mom! Mom! New Aleph0 video dropped🎉
@Sumpydumpert5 ай бұрын
Great video explained very well ❤
@Kelikabeshvill6 ай бұрын
Great job, but can you do it even simpler? like without using the jargon at all.
@ReadingDave5 ай бұрын
This math might be above my level, but it makes me hopeful. I was just wondering how to approach classifying ranges of relations as Rational or Irrational.
@gregsarnecki75816 ай бұрын
So is this like the Langlands program, just for Complex Analysis and Algebraic Geometry, as opposed to Number Theory and Geometry? Just trying to get my head around these different branches of Mathematics of which I clearly know so little!
@hyperduality28386 ай бұрын
Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@Matematikervildtsjov6 ай бұрын
Great video as usual! Minor correction, at 11:59, you made a typo in "Riemann" (Reimann).
@heeraksharma12246 ай бұрын
5:33 Why do we need to explicitly evoke f(1/z)? Will lim z->inf f(z) not work? Also, to check if a function is meromorphic at inf, is there no other way than to see this other than checking singularity of f(1/z)?
@chobes18276 ай бұрын
The notion of taking a limit as a value approaches infinity isn't well defined in the complex plane the same way it is for the real line. On the real line, there's only really one way we can make a variable approach infinity (by making the variable bigger and bigger). In the complex plane, variables can grow infinitely along an uncountably infinite amount of paths that move in different directions. We need to make a statement about what happens as z grows infinitely large in any of the possible directions. We're interested in what happens as |z| approaches infinity along any possible path. Working with lim |z| -> infinity is technically sufficient to formulate the definition of a function being continuous, holomorphic, or meromorphic at infinity, but it's tricky to reason about a variable growing larger across the entire plane. We use the fact that as |z| approaches infinity, |1/z| approaches 0 to make the behavior we're interested in easier to reason about. By looking at the behavior of f(1/z) when |z| is small, we can study the behavior of f(z) as |z| approaches infinity by reasoning about the behavior of a function on a small disk, which is much more manageable than thinking about f's behavior as z grows larger in any of the possible directions.
@heeraksharma12246 ай бұрын
@@chobes1827 thank you for your reply. That makes sense.
@hyperduality28386 ай бұрын
Exponentials are dual to logarithms. Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@heeraksharma12246 ай бұрын
@@hyperduality2838 How high are you?
@hyperduality28386 ай бұрын
@@heeraksharma1224 Points are dual to lines -- the principle of duality in geometry. If Riemann geometry is dual then this means that singularities (points) are dual. Black holes = positive curvature singularities. White holes (the big bang) = negative curvature singularities. The definition of Gaussian negative curvature requires two dual points:- en.wikipedia.org/wiki/Gaussian_curvature The big bang is an infinite negative curvature singularity -- a Janus point/hole. Two faces = duality. The physicist Julian Barbour has written a book about Janus points/holes. Topological holes cannot be shrunk down to zero -- non null homotopic. Energy is dual to mass -- Einstein. Dark energy is dual to dark matter. Dark energy is repulsive gravity, negative curvature or hyperbolic space (a pringle) -- inflation. The big bang an explosion is repulsive by definition -- negative curvature. The point duality theorem is dual to the line duality theorem -- universal hyperbolic geometry. The bad news is that Einstein threw his negative curvature solutions in the proverbial waste paper bin of history!
@mabeteekay14036 ай бұрын
can you please do some concepts in representation theory , lie groups and that sort of math , great channel ❤❤
@hyperduality28386 ай бұрын
Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@lukekhh6 ай бұрын
I think the way you glued the ends of the cylinder together at 7:20 will get you a Klein bottle
@lukekhh6 ай бұрын
PS great video ❤
@DanielRublev6 ай бұрын
Very cool! Hope to see more facts from this profound theory.
@brendawilliams80626 ай бұрын
Without algebra please
@DanielRublev6 ай бұрын
@@brendawilliams8062 did you get the idea of bridge from the video?
@brendawilliams80626 ай бұрын
@@DanielRublev it’s harder with algebra
@DanielRublev6 ай бұрын
@@brendawilliams8062 maybe
@oshaya6 ай бұрын
At 11:55, Rain Man, oups Reimann, made his way in.
@phat53406 ай бұрын
Always glad to see you return
@smoothacceleration4376 ай бұрын
This is a great video for going to sleep. HIghly recommend to any insomniac.
@erictao83966 ай бұрын
Great video!
@DelandaBaudLacanian6 ай бұрын
"imaginary numbers" shouldve been called "orthogonal" numbers, then people could maybe understand how it's related to geometry
@carywalker76626 ай бұрын
Love it.
@tomkerruish29826 ай бұрын
Take it up with Descartes.😂
@angeldude1016 ай бұрын
I call them "spinny numbers", because they are the best tool for the job of making 2D objects go spinny. (Naturally there are also 3D spinny numbers, which are rather famous, or more accurately infamous.)
@Stylpe6 ай бұрын
And "complex numbers" could just be "2D numbers"
@zenshade20006 ай бұрын
Yeah, I've never understood the "mystery" of imaginary numbers. It's just a mental construct that lets us model periodicity in a precise manner.
@melm42516 ай бұрын
i need to do a repair on a jacket pocket but the best way to patch it would be with a riemann surface... sadly i can't find one in craft stores
@royronson88726 ай бұрын
I hit the like exactly at 13 seconds
@felipegomabrockmann27406 ай бұрын
excelent video
@ElectroTermagantАй бұрын
This the final conclusion of this reminds me a little of Umbral Calculus compared to polynomials...
@Williamtolduso6 ай бұрын
i neeeed the next video!!
@johnchessant30126 ай бұрын
9:10 elliptic curve?
@hyperduality28386 ай бұрын
Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@ben19961235 ай бұрын
yes that's why they are called elliptic curves, because ℘ and ℘' are elliptic functions
@darkshoxx6 ай бұрын
Interesting choice to talk about the complex torus and the p function and y^2 = x^3-x and NOT mention the term Elliptic curve 😉 Guess you didn't want to overload the video with even more topics
@hyperduality28386 ай бұрын
Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@darkshoxx6 ай бұрын
Up next: the GAGA theorem
@DeathSugar6 ай бұрын
Oooh, are we going to do Ricci flow at some point? Or only Langlands stuff with fancy graphs like those meromorphics?
@daviderady6 ай бұрын
Love the video!
@Aleph06 ай бұрын
thanks davide!
@Sumpydumpert5 ай бұрын
So it’s a neat twist on a binary system ? Just 1,0
@Icenri6 ай бұрын
From here to Taniyama-Shimura!
@ArduousNature6 ай бұрын
beautiful
@probablyrandom316 ай бұрын
Nice!
@rhopsi-q6b6 ай бұрын
Wow. More!
@Sidionian6 ай бұрын
Finally he's back....
@noobtommy47393 ай бұрын
I'm just here for the colorful squares
@williammartin4416Ай бұрын
Thanks!
@zray29376 ай бұрын
Ah yes, another glimpse of a mathematical world that is far too complex for my little mind.
@AdrianBoyko6 ай бұрын
Is the final statement of this video false? Shouldn’t it be “SOME OF Complex Analysis SOME OF Algebraic Geometry”? Or do I need to watch the video again?
@zaccrisp99886 ай бұрын
Example? Or is it that only if you make the right comparison or equality?
@oscargr_6 ай бұрын
Please do Bernhard the honor of spelling his last name correctly. It's *Riemann* (@ 12:00)
@hyperduality28386 ай бұрын
Riemann geometry is dual. Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@oscargr_6 ай бұрын
@@hyperduality2838 Always so to the point.🤔🤣
@hyperduality28386 ай бұрын
@@oscargr_ Points are dual to lines -- the principle of duality in geometry. If Riemann geometry is dual then this means that singularities (points) are dual. Black holes = positive curvature singularities. White holes (the big bang) = negative curvature singularities. The definition of Gaussian negative curvature requires two dual points:- en.wikipedia.org/wiki/Gaussian_curvature The big bang is an infinite negative curvature singularity -- a Janus point/hole. Two faces = duality. The physicist Julian Barbour has written a book about Janus points/holes. Topological holes cannot be shrunk down to zero -- non null homotopic. Energy is dual to mass -- Einstein. Dark energy is dual to dark matter. Dark energy is repulsive gravity, negative curvature or hyperbolic space (a pringle) -- inflation. The big bang an explosion is repulsive by definition -- negative curvature. The point duality theorem is dual to the line duality theorem -- universal hyperbolic geometry. The bad news is that Einstein threw his negative curvature solutions in the proverbial waste paper bin of history!
@Happy_Abe6 ай бұрын
So every compact Riemann surface is an algebraic curve but is the other way true that every algebraic curve can be realized as a compact Riemann surface? If not these fields aren’t the same, just that these surfaces can be viewed equivalently in both but not all algebraic curves can be studied using complex analysis and not everything in complex analysis is a compact Riemann surface that can be studied in algebraic geometry. Therefore, I’m not sure I understand what the video is trying to conclude about them being the same and I’m just trying to understand that last point.
@hyperduality28386 ай бұрын
Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!
@paperstars90786 ай бұрын
So my complex analysis exam is algebraic geometry in a trenchcoat?
@maloukemallouke9735Ай бұрын
greate thank you so much for share
@TheBasikShow6 ай бұрын
Just checking but like. The arrow in that last image doesn’t go both ways, does it? Sure, every Riemann surface is an algebraic surface and that’s cool, but like. There are three-dimensional algebraic surfaces, but there are no three-dimensional Riemann surfaces, right? So there are some varieties that are not Riemann-able.
@pierrekilgoretrout31436 ай бұрын
wow!
@IamRigour6 ай бұрын
New Sub
@SphereofTime4 ай бұрын
2:18
@purewaterruler6 ай бұрын
I think it might be good if you could get a pop filter. It sounds like I'm hearing a few too many pops
@davethesid89606 ай бұрын
Him: "f of zee equals exp of zed squared." You must be a Bramerican.
@hyperduality28386 ай бұрын
Exponentials are dual to logarithms. Sine is dual to cosine or dual sine -- the word co means mutual and implies duality. Real is dual to imaginary -- complex numbers are dual. Injective is dual to surjective synthesizes bijective or isomorphism -- group theory. Syntax is dual to semantics -- languages or communication. If mathematics is a language then it is dual. Lie groups are dual to Lie algebras. Vectors (contravariant) are dual to co-vectors (covariant) -- dual bases. Riemann geometry or curvature is dual -- upper indices are dual to lower indices. Positive curvature (convergence, syntropy) is dual to negative curvature (divergence, entropy) -- Gauss, Riemann geometry. Subgroups are dual to subfields -- the Galois correspondence. Elliptic curves are dual to modular forms. Categories (form, syntax, objects) are dual to sets (substance, semantics, subjects) -- Category theory. "Always two there are" -- Yoda. Poles (eigenvalues) are dual to zeros -- optimized control theory. All numbers fall within the complex plane hence all numbers are dual. The integers are self dual as they are their own conjugates. Duality creates reality!