Multivariate Gaussian distributions

  Рет қаралды 269,106

Alexander Ihler

Alexander Ihler

Күн бұрын

Properties of the multivariate Gaussian probability distribution

Пікірлер: 107
@MacMac0710
@MacMac0710 5 жыл бұрын
This is great because you explain notation as well as giving solid examples!
@blasttrash
@blasttrash Жыл бұрын
at 6:30 at the bottom right there is a contour plot where its printed that (sigma_11)^2 > (sigma_22)^2 What exactly is sigma_11 in that diagram? Is it the distance from center point of the contour plot to first concentric circle? or is it distance from center to 2nd concentric circle? or is it distance from center to 3rd concentric circle? Or is it something else? Similarly what is sigma_22?
@prathamhullamballi837
@prathamhullamballi837 Жыл бұрын
@@blasttrash When you look at the contour plot but only taking x axis, then the variance associated with distribution along x-axis is (sigma_11)^2. Similarly, for y-axis, it would be (sigma_22)^2. Look at how the 'spread' in the contour plot along x-axis is more than the same along y-axis? That is precisely what we mean by (sigma_11)^2 > (sigma_22)^2. Note that the circles are just contour plots and the distance from it to the centre doesn't necessarily mean it is sigma_11 or anything.
@alisalimy9387
@alisalimy9387 4 жыл бұрын
Hard to find a good explanation of this problem, until i found this! Great job Alexander!!!
@dsilvavinicius
@dsilvavinicius 8 жыл бұрын
Finally a good explanation of the geometry interpretation of two-dimensional Gaussian! Great job!
@christinhainan
@christinhainan 12 жыл бұрын
I find your KZbin videos much more helpful to learn - compared to the class videos. Maybe because I suffer from short attention span.
@張浩浩-i5z
@張浩浩-i5z 4 жыл бұрын
Thanks for you. Alexander. The best one I have seen.
@rajanalexander4949
@rajanalexander4949 3 жыл бұрын
Great explanation -- especially the graphical interpretation and example. Thank you!
@amirkeramatian653
@amirkeramatian653 7 жыл бұрын
Very helpful video with clear explanations. Thanks a lot!
@ZLYang
@ZLYang Жыл бұрын
At 4:32, if x and μ are row vectors, [x-μ] should also be a row vector. Then how to multiply (Σ^(-1))* [x-μ]? Since the dimension of (Σ^(-1)) is 2*2, and the dimension of [x-μ] is 1*2.
@yurpipipchz75
@yurpipipchz75 9 күн бұрын
Thank you for the knowledge!
@RonnyMandal75
@RonnyMandal75 8 жыл бұрын
Haha, why would someone vote this down? This is great!
@boyangchen5544
@boyangchen5544 5 жыл бұрын
exactly the best I can find
@chrischoir3594
@chrischoir3594 5 жыл бұрын
They voted it down because hey are probably democrats and they don't like truth and facts
@llleiea
@llleiea 4 жыл бұрын
Ronny Mandal maybe bc there are some small mistakes
@fupopanda
@fupopanda 4 жыл бұрын
He does have mistakes and really bad inconsistencies throughout the slides. Not enough to dislike though, but enough to not be surprised of the dislikes.
@LegeFles
@LegeFles 3 жыл бұрын
@@chrischoir3594 I thought the republicans don't like truth and facts
@ИванВайгульт
@ИванВайгульт 3 жыл бұрын
Ha, the approach of decomposing the covariance matrix would be a nice example of PCA!
@jiongwang7645
@jiongwang7645 11 жыл бұрын
thank you very much, this is succinct and easy to understand, way better than many text books !!
@visheshsinha_
@visheshsinha_ 4 жыл бұрын
Thank You so much , I was struggling to understand this , you made it really simple.
@renato5668
@renato5668 2 жыл бұрын
This is a great explanation, it helped a lot
@chyldstudios
@chyldstudios 2 жыл бұрын
Solid explanation.
@nates3361
@nates3361 2 жыл бұрын
Excellent explanation
@K4moo
@K4moo 10 жыл бұрын
Thank you for sharing, very useful.
@avijoychakma8678
@avijoychakma8678 5 жыл бұрын
Nice explanation. Thank you so much.
@martynasvenckus423
@martynasvenckus423 2 жыл бұрын
At 5:32, Alexander says "The scaling of the sigmas is accomplished by creating a diagonal covariance matrix". Could you explain what does "scaling of the sigmas" mean? Where are they being scaled? Thanks
@timvandewauw1045
@timvandewauw1045 2 жыл бұрын
When calculating the joint distribution p(x1)p(x2) for vector x_underlined = [x1 x2], he vectorizes (x1-mu2) and (x1-mu2) to the vector form (x_underlined-mu_underlined). I believe what he means by scaling of the sigmas, is a similar transformation from two seperate, scalar sigmas to a matrix, in this case the covariance matrix Sigma.
@JieunKo-v1l
@JieunKo-v1l 3 ай бұрын
Thanks for wonderful explanation Do you share slides?
@spyhunter0066
@spyhunter0066 2 жыл бұрын
Could you explain more about the sum of the vectors in your notations for the maximum likelihood estimates at the minute 1.45? As far as I have noticed, there has been only one data set, namely one x vector. Thus, what actually are you summing up with j indices? Cheers.
@elumixor
@elumixor 4 жыл бұрын
I think there is an error in the maximum likelihood formula in the order of vector multiplication. The way you have it makes the operation a dot product, not the outer product.
@spyhunter0066
@spyhunter0066 2 жыл бұрын
I'd like to know how you call your x value for univariate caseü or x value set for multivariate case in your Gaussian distribuitons? Do you name them as "data set" or " variable set"? Also, what makes the mean value size same as the x data size? Thanks in advance. Should we think that we create one mean average for every added x data point in our data set? That's why we average them when we find the best estimated value in the end.
@d-rex7043
@d-rex7043 2 жыл бұрын
This should be mandatory viewing, before being assaulted with the symbolic derivations!
@amizan8653
@amizan8653 10 жыл бұрын
that was extremely helpful, thanks for posting!
@spyhunter0066
@spyhunter0066 2 жыл бұрын
should we get x vector also as a row vector with length d just like nü (mean) vector at the minute of 1.44!
@ProfessionalTycoons
@ProfessionalTycoons 6 жыл бұрын
clear explanation very good
@nyctophilic1790
@nyctophilic1790 4 жыл бұрын
Thank you so much , awsome work
@parshantjuneja4811
@parshantjuneja4811 3 жыл бұрын
Thanks dude! I get it now! Well almost ;)
@spyhunter0066
@spyhunter0066 2 жыл бұрын
At the minute of 1.34, the maximum likelihood estimates formula has 1 over N coefficient. On the other hand, at the minute of 3.13, there is 1 over m coefficients. We know that N and m is the total number of values in the sums, but what is the reason you used different notations as N and m. Is it just to seperate univariate and multivariate cases while they keep their definitions (or meaning)? Also, the j values in the lower and upper limits of sum sembols are not so clear in this notation. Should we write j=1 to j=m or N for instance?
@spyhunter0066
@spyhunter0066 2 жыл бұрын
In the formula at the minute 2.11, when you find the inverse of a Sigma matrix in the exp(...) , do you use unit matrix method, any coding , or some other method? Cheers.
@kaushik900
@kaushik900 8 жыл бұрын
At 11:02, you mean Xb=X*sqrt(EIGEN VALUE MATRIX) right?
@thomasbloomfield4070
@thomasbloomfield4070 7 жыл бұрын
At 11:00 isn't that the eigenvalue matrix, not the eigenvector matrix? Thanks for the great video!
@GundoganFatih
@GundoganFatih 3 жыл бұрын
6:28 why do we create a diagonal cov. matrix. Let X be a feature set of two features (mx2), shouldn't sigma be cov(X)?
@spyhunter0066
@spyhunter0066 2 жыл бұрын
One more question about the example at the minute of 4.24, you said independent x1 and x2 variables. Independendent of what??? As far as I see, you can have 2 univariate formula like in this example, but when you combine them to see the combined likelihood, you have to have a mean vector in size of 2 and Sigma matrix iin size of 2x2. That's always the case, right? The size of the mean vector and the Sigma matrix look like defined by the number of combination of x values. Is that right? I saw another example somewhere else, you can have L(μ=28 ,σ=2 | x1=32 and x2=34) for instance to find the combined likelihood at x1=32 and x2=34, and he uses only one mean and sigma for both. REF:kzbin.info/www/bejne/ep-Zk2yceK6Ipq8&ab_channel=StatQuestwithJoshStarmer
@ProfessionalTycoons
@ProfessionalTycoons 5 жыл бұрын
thank you for this post!
@hcgaron
@hcgaron 6 жыл бұрын
is the vector x assumed to be a row vector? I ask only because we have x - mu which is a row vector inside the exponential. To subtract components, would we not assume that x is a row vector like mu?
@laurent__9032
@laurent__9032 5 жыл бұрын
Love your videos! Isn't there a small mistake where you place your transpose ? Should'nt it be $\Delta^2=(x-\mu)^T\Sigma(x-\mu)$ instead ?
@karthiks3239
@karthiks3239 11 жыл бұрын
Really nice video.. Thanks a lot.. !
@PravNJ
@PravNJ 5 жыл бұрын
Thank you. This was helpful!
@osamaa.h.altameemi5592
@osamaa.h.altameemi5592 10 жыл бұрын
Very nice video thank you.
@hayekpower5464
@hayekpower5464 3 жыл бұрын
Why does x is a row vector instead of column vector?
@ayasalama7965
@ayasalama7965 6 жыл бұрын
in 12:45 shouldn't the expression on top of the graph be XD rather than XC ? great video !
@snesh93
@snesh93 3 жыл бұрын
From 4:12 to 6:24 where is an explanation on the Independent Gaussian models, I have a basic doubt on the Sigma calculation. I am finding hard to understand that sigma needs to be a diagonal matrix of (sigma_1*sigma_1 , sigma_2*sigma_2), shouldnt it be a matrix of the form [[sigma_1*sigma_1, sigma_1*sigma_2], [sigma_2*sigma_1, sigma_2*sigma_2]] ? Can anyone explain that to me ?
@AlexanderIhler
@AlexanderIhler 2 жыл бұрын
The covariance matrix of a zero man Gaussian has entries sig_ij = E[xi xj]. So if xi and xj are independent, this is zero except along the diagonal. I think you’re describing a rank 1 matrix? Which is different from independence in probability.
@samfriedman5031
@samfriedman5031 9 ай бұрын
4:07 MLE for sigma-hat should be X by X-transpose (outer product) not X-transpose by X (inner product)
@tomt8691
@tomt8691 8 жыл бұрын
This is fantastic! Thank you!
@dc6940
@dc6940 4 жыл бұрын
So, when features are independent, finding P(x1) and P(x2) individually and then multiplying is same as finding using multivariate gaussian distribution 6:13 ? Is my understanding correct?
@junlinguo77
@junlinguo77 3 жыл бұрын
yes
@emirlanaliiarbekov8729
@emirlanaliiarbekov8729 3 жыл бұрын
clearly explained!
@shivampadmani_iisc
@shivampadmani_iisc 9 ай бұрын
Thank you so much so much sooooo much
@andrew-kd4jk
@andrew-kd4jk 11 жыл бұрын
very good tutorial
@abdoelrahmanbashir4096
@abdoelrahmanbashir4096 4 жыл бұрын
thank you teacher :)
@utsavdahiya3729
@utsavdahiya3729 5 жыл бұрын
Thank youuuuuuuuuu♥️♥️♥️♥️♥️♥️♥️
@livershotrawmooseliver2498
@livershotrawmooseliver2498 10 жыл бұрын
What is meant by compressing a 2D Gaussian function in 3D?
@AlexanderIhler
@AlexanderIhler 10 жыл бұрын
Sorry; where is that? Most likely I simply meant that, to draw a 2D Gaussian distribution requires a 3D drawing -- 2 variables x1,x2, plus the probability p(x1,x2). It's inconvenient to try to render 3D functions, so we usually plot contours in 2D instead (x1 and x2), with the contours indicating the lines of equal probability, p(x1,x2)=constant.
@livershotrawmooseliver2498
@livershotrawmooseliver2498 10 жыл бұрын
Is it possible to compress a 2D Gaussian function?
@georgestamatelis7812
@georgestamatelis7812 3 жыл бұрын
thank you
@100uo
@100uo 11 жыл бұрын
awesome, thank you man!
@OrhaninAnnesi
@OrhaninAnnesi 7 жыл бұрын
please stop using probability density and probability interchangeably. The formula for a normal distribution never gives a probability, but a probability density, which can be greater than 1.
@Tokaexified
@Tokaexified 6 жыл бұрын
I fell asleep watching this video with both hands under my head…when I woke up both of them had fell seep asleep and wouldn't wake up in a while..
@alaraayhan7762
@alaraayhan7762 4 жыл бұрын
thank you !!
@spyhunter0066
@spyhunter0066 2 жыл бұрын
At 5.23, you should have said (x-mu) transpose.
@AlexanderIhler
@AlexanderIhler 2 жыл бұрын
These slides have a number of transposition notation errors, due to my having migrated from column to row notation that year. Unfortunately KZbin does not allow updating videos, so the errors remain. It should be clear in context, since i say “outer product” for the few non inner products.
@spyhunter0066
@spyhunter0066 2 жыл бұрын
@@AlexanderIhler NO worries, we spot them.
@harshitk11
@harshitk11 3 жыл бұрын
x needs to be a column vector instead of row vector.
@ilyaskapenko8089
@ilyaskapenko8089 5 жыл бұрын
at kzbin.info/www/bejne/m5nSaat-aKppo6c Why Delta^2 = (x-mu) * Σ^-1 * (x-mu)^T, not Delta^2 = (x-mu)^T * Σ^-1 * (x-mu)?
@muratakjol1437
@muratakjol1437 4 жыл бұрын
Summary: 13:02
@quangle5701
@quangle5701 3 жыл бұрын
Can anyone explain how to vectorize the formula at 5:16? Thanks
@CSEfreak
@CSEfreak 11 жыл бұрын
AMazing thank you
@samarths
@samarths 7 жыл бұрын
thanks a lot
@lemyul
@lemyul 5 жыл бұрын
thanks alexa
@farajlagum
@farajlagum 9 жыл бұрын
Thumb up!
@austikan
@austikan 5 жыл бұрын
this guy sounds like Archer.
@thedailyepochs338
@thedailyepochs338 4 жыл бұрын
Lanaaaaaaa!!!!!!
@heyptech1726
@heyptech1726 6 жыл бұрын
nice
@amitcraul
@amitcraul 6 жыл бұрын
at 9:24 Σ= UΛU^-1 instead of Transpose
@AlexanderIhler
@AlexanderIhler 6 жыл бұрын
U is a unitary matrix, so they're the same
@ProfessionalTycoons
@ProfessionalTycoons 6 жыл бұрын
Orthogonal matrix inverse == transpose
@콘충이
@콘충이 4 жыл бұрын
wow
@umbhutta
@umbhutta 4 жыл бұрын
wow 1.5K supporter and just 40 haters :P
@danny-bw8tu
@danny-bw8tu 6 жыл бұрын
it is not 2 dimension, it is 3 dimension
@bingbingsun6304
@bingbingsun6304 Жыл бұрын
学习
@fupopanda
@fupopanda 4 жыл бұрын
Too many mistakes in the slides. But otherwise good explanation.
@torTHer68
@torTHer68 4 жыл бұрын
ale beka xd
@spyhunter0066
@spyhunter0066 2 жыл бұрын
Can you tell me the diffference between bivariate and multivariate case ? Can you also mention about when the parameters are dependent where we add extra dependence coefficient parameter? There is a sample video to refer for you give a better idea: kzbin.info/www/bejne/e5nQYaCZob-ma5Y
@AlexanderIhler
@AlexanderIhler 2 жыл бұрын
Bivariate = 2 variables; multivariate = more than one variable. So bivariate is a special case, in which the mean is two-dimensional and the covariance is 2x2. Above 2 dimensions it is hard to visualize, so I usually just draw 2D distributions; but the mathematics is exactly the same.
@spyhunter0066
@spyhunter0066 2 жыл бұрын
@@AlexanderIhler Your initial case of 1D Gaussian with only one x value is indeed a bivariate case with one x value with two parameters,the mean and the sigma value, right? Also, bivariate case can be called the simplest case of multivariate occasion, right? If we have a data set x and a multiple variable of mean and sigmas, we have to use your MULTIVARIATE CASE with a vector of x values and mean values with a covariance matrix for the sigma values, shouldn't we? Thanks for the help in advance.
@AlexanderIhler
@AlexanderIhler 2 жыл бұрын
No, those are the parameters; if “x” (the random variable) is scalar, it is univariate, although the distribution may have any number of parameters. So, if x is bivariate, x=[x1,x2], the mean will have 2 entries and the covariance 4 (3 free parameters, since it is symmetric), so the distribution has 5 parameters total.
@spyhunter0066
@spyhunter0066 2 жыл бұрын
@@AlexanderIhler x is your data point, right! If it is only one scalar value, the case is called univariate case, but if it is a vector of scalar values of two, it is called bivariate by definition. That's it. For bivariate and multivariate case where the data x variable is a vector of size d, the mean is also a vector of the same size of x vector. Thus, the covariance matrix by definition the square matrix has to have d by d matrix if x and mean has d dimension as you said . I assume you said 5 parameters in total, because symmetric terms are equal in covariance matrix, so 4-1=3 parameters coming from that Sigma matrix with size d x d .
@joschk8331
@joschk8331 6 жыл бұрын
the video is great but your audio sucks. buy an adequate microphone
@jfrohlich
@jfrohlich 6 жыл бұрын
I can understand everything he's saying just fine.
Linear regression (1): Basics
5:47
Alexander Ihler
Рет қаралды 22 М.
Multivariate Normal | Intuition, Introduction & Visualization | TensorFlow Probability
26:33
Миллионер | 2 - серия
16:04
Million Show
Рет қаралды 1,9 МЛН
風船をキャッチしろ!🎈 Balloon catch Challenges
00:57
はじめしゃちょー(hajime)
Рет қаралды 20 МЛН
Why π is in the normal distribution (beyond integral tricks)
24:46
3Blue1Brown
Рет қаралды 1,6 МЛН
Machine learning - Introduction to Gaussian processes
1:18:55
Nando de Freitas
Рет қаралды 297 М.
Multivariate normal distributions
30:11
Jack Baker
Рет қаралды 41 М.
Probability is not Likelihood. Find out why!!!
5:01
StatQuest with Josh Starmer
Рет қаралды 1,1 МЛН
Understanding Multivariate Gaussian Distribution (Machine Learning Fundamentals)
13:54
TechViz - The Data Science Guy
Рет қаралды 11 М.
Multivariate Normal (Gaussian) Distribution Explained
7:08
DataMListic
Рет қаралды 36 М.
Multivariate Normal Distribution | Probabilities
8:24
math et al
Рет қаралды 83 М.
Clustering (4): Gaussian Mixture Models and EM
17:11
Alexander Ihler
Рет қаралды 285 М.
Probability and Statistics: Overview
29:43
Steve Brunton
Рет қаралды 72 М.
Lecture 30: Chi-Square, Student-t, Multivariate Normal | Statistics 110
47:28
Миллионер | 2 - серия
16:04
Million Show
Рет қаралды 1,9 МЛН