Support the production of this course by joining as a Channel Member to get exclusive videos, original music, lecture notes, and more: kzbin.info/door/yEKvaxi8mt9FMc62MHcliwjoin Abstract Algebra Course: kzbin.info/aero/PLztBpqftvzxVvdVmBMSM4PVeOsE5w1NnN Abstract Algebra Exercises: kzbin.info/aero/PLztBpqftvzxVQNtNnXeHB_1yquKUY98Xz
@linonator2 жыл бұрын
Hey man! Just want to give a huge thanks to you. I just found your channel and from one video you helped unlock my understanding of something I was having trouble with. Thank you for create content like this. You really are making an impact on complete strangers for the better. Thanks again and keep up the great content
@WrathofMath2 жыл бұрын
Thanks so much! Llet me know if you have any requests!
@raulbeienheimer Жыл бұрын
Thanks!
@WrathofMath Жыл бұрын
Glad to help - thanks so much for your support, Raül! Let me know if you ever have any questions, I will be making a lot more Abstract Algebra content this summer.
@o_oyxy11 ай бұрын
i love you bro youre carrying me
@hamzaker8292 жыл бұрын
What a great channel ! THIS IS SOOOOO UNDERRATED
@DrMathKinzie Жыл бұрын
The asterisks usually are used to denote the non-zero rationals/reals/complexes, rather than the positive ones. In particular, there is no possible notion of "positive" for the complex numbers (no linear ordering that satisfies the usual properties of "
@MrCoreyTexas5 ай бұрын
The first thing I thought of when I saw positive complex numbers was wait what does that mean? The real part is positive, the imaginary part is positive, both are positive?
@enderesting Жыл бұрын
This video is the best explanation for subgroups on youtube :,)) Thank you so much! I found a lot of videos confusing because they never explain the definition of subgroup or give any example. This is perfect :,3
@WrathofMath Жыл бұрын
Thank you - so glad it helped! I am trying to make my Abstract Algebra playlist the best around! Will be working hard on it this summer. kzbin.info/aero/PLztBpqftvzxVvdVmBMSM4PVeOsE5w1NnN
@Bedoroski4 ай бұрын
Your presentation is even better than actual textbooks! I'm looking forward to more of these content, and maybe a future textbook of your own ;)
@WrathofMath4 ай бұрын
Thanks so much! There are many more videos on the way - right now my focus is finishing linear algebra, but I'll come back to the abstract algebra series shortly. I did just recently add a couple of new videos. I'm particularly excited to make more alg videos with my improved penmanship!
@drapwill Жыл бұрын
Absolutely love your channel thus far! Your explanations have unraveled some major knots in my mathematical thinking. Outstanding!
@WrathofMath Жыл бұрын
Thanks so much!
@henriettesmit5099Ай бұрын
Great explanations ! Keep up the good work.
@WrathofMathАй бұрын
Thank you!
@punditgi2 жыл бұрын
More good stuff. Nice! 😃
@WrathofMath2 жыл бұрын
Thank you! In a real abstract alg mood lately!
@allstar965 Жыл бұрын
Thanks a lot! Very informative!
@WrathofMath Жыл бұрын
Thanks for watching! Isomorphic group lesson comes out tonight - lots more algebra to come!
@nazombie79359 ай бұрын
Thank you sire!! This video helped my understanding of subgroups so much
@xylynpasol98319 ай бұрын
Thank you so much! Very clear explanation.
@WrathofMath9 ай бұрын
Glad it was helpful! Check out the playlist for more if you haven't already! kzbin.info/aero/PLztBpqftvzxVvdVmBMSM4PVeOsE5w1NnN
@nilanjanabose3059 Жыл бұрын
You made this chapter very clear thank you❤ from india
@BelkisNano9 күн бұрын
7:25 {0,2} is not closure either under addition or under the inverse because 2+2=4 and 4 is not an element in the set and the inverse of 2 is -2! so how is it a subgroup?
@AlfredoPadin-f8j10 ай бұрын
What note taking app are you using?
@delzeltyna2 жыл бұрын
thank you!!!❤
@WrathofMath2 жыл бұрын
Glad to help! Check out my abstract algebra playlist if you're looking for more, and let me know if you have any questions!: kzbin.info/aero/PLztBpqftvzxVvdVmBMSM4PVeOsE5w1NnN
@liketsontobo8463 Жыл бұрын
great video bro! keep it up
@WrathofMath Жыл бұрын
Thank you - I will, let me know if you ever have any questions!
@SkinnyMMA Жыл бұрын
Why do we consider multiplicative inverse of a and NOT additive inverse in 13:59
@WrathofMath Жыл бұрын
That's just log properties. We had -log a, and that is the same as log (a^-1). In general, xlog(y) = log(y^x). Does that answer your question?
@SkinnyMMA Жыл бұрын
@@WrathofMath oh actually I get it now... Btw, I knew about this log property, now I don't understand why on earth I asked this query 😅... Thanks though for listening out
@laurenfung7265 Жыл бұрын
this video saved me from my math test !
@WrathofMath Жыл бұрын
So glad it helped!
@MrCoreyTexas5 ай бұрын
I was watching another mathematician and he has H
@ronbitan2641 Жыл бұрын
Hello! According to the rule you gave where H has to be closed with respect to inverses and multiplication, ehy multiplication? What if the operation of the group is + for example? Does it still need to be closed under multiplication or does it depend on the operation?
@WrathofMath Жыл бұрын
As long as we're talking about groups, "multiplication" is just short for "the operation". We generally default to multiplicative notation and verbiage unless we know we're dealing with an additive group. Does that make sense? Definitely check out my abstract algebra playlist and the exercises playlist for more, here's a link to an unreleased video on subgroup tests you may find as useful follow up: kzbin.info/www/bejne/pqC0iZlvZdmWfK8
@JesyrelAndrew10 ай бұрын
Really cool. Well explained. I enjoyed though
@WrathofMath10 ай бұрын
Awesome, thank you!
@Channel-zb1fi Жыл бұрын
When you test for if a set is closed under some operation, do you have to test for the element multiplied by itself or do the elements have to be distinct? If that is the case then how do you go about dealing with sets containing only one element?
@jonko82 Жыл бұрын
When you you want to prove closure under the operation you simply pick two arbitrary elements from the set. Those arbitrary elements may or may not be distinct. In the example in the video loga and logb might be two distinct elements or they might be the same element. The proof holds either way. When you want to disprove closure you just need to find any two elements of the set that, when combined, do not produce another element of the set. Those two elements may or may not be distinct also.
@l.JAI.SHREE.RAM.l7 ай бұрын
Sir, I have a doubt, at many places group is represented by G how can it be possible, G may be a set not group, group should always denoted by (G,*). Please clear it🙏
@tirtahadith6 ай бұрын
Done
@dripici4371 Жыл бұрын
we fa pt facultate ca am nevoie poimaine la fai
@guddu19582 жыл бұрын
Don't you ever get tired 😴
@WrathofMath2 жыл бұрын
Often!
@jarrenblake28862 жыл бұрын
Fun fact you lost 30% battery life during this vid
@WrathofMath2 жыл бұрын
That's more a depressing fact haha. Time for a new iPad!