Nice, You need to explain ^=read as to the power *=read as square root Let's explain *{(11/2)^2 -1} =*{(121-4)/4} =*{117/4} =(3.*13)/2 Again explain,* [(11/2)-{3.*13)/2}] =*{11-(3.*13)}/2 =*{(22-6.*13)/4} *[{(*13)^2+3^2-(2×*13×2)}/4] =*[{(*13-3)/2}^2] =(*13-3)/2 Now 4×{(*13-3)/2} =2{(*13-3) =(2.*13)-6 Again 1+(2.*13)-6=(2.*13)-5 ={(16.*13)-40}/8 =[(*13)^3-(1)^3-{3×(*13)^2×1}+{3×*13×(1)^2}]/(2^3) =(*13-1)^3/(2^3) ={(*13-1)/2}^3 As per question [{(*13-1)/2}^3]^(1/3) =(*13-1)/2