An Interesting Cubic Equation

  Рет қаралды 515

SyberMath

SyberMath

Күн бұрын

Пікірлер: 10
@shogun6943
@shogun6943 2 сағат бұрын
a^3 -b^3 -3ab=1 a^3 + ( -b)^3 + (-1)^3 = 3(a)(-b)(-1) Therefore a + (-b) + (-1) = 0 Hence a - b = 1 Because when a^3 + b^3 + c^ 3 = 3abc then a + b + c = 0
@elecbertelecbert-l5e
@elecbertelecbert-l5e 3 сағат бұрын
You are genius super genius a real human with hope all my educators said humans must be genius but if they are not they are animals because animals can not solve mathematics but actually all my school solve nothing and fail in the finally exams you are so brilliant keep going 🎉🎉
@KennethChile
@KennethChile 2 сағат бұрын
If you graph in desmos or Wolfram x^3-y^3-3ab=1 you obtain the line y=x-1, so x-y=1 is consistent with your first solution, but not the second x-y=-2, why?
@bosorot
@bosorot Сағат бұрын
To better visualize on demos , use a slider instead of number 3. move it around and you will see that only number 3 will give you this special relationship that made a-b a constant . For a=-1 and b =1 . it is only a dot / not a line . It will not show a dot on graph.
@giuseppemalaguti435
@giuseppemalaguti435 2 сағат бұрын
...(a-b)=(1+3ab)/((a-b)^2+3ab)...1/(a-b)=((a-b)^2/(1+3ab))+1...(1-a+b)/(a-b)=(a-b-1)(a-b+1)/(1+3ab)....quindi una soluzione è a-b-1=0,a-b=1
@arekkrolak6320
@arekkrolak6320 3 сағат бұрын
This is becoming a joke. Why discard two solutions out of three?
@bosorot
@bosorot 48 минут бұрын
if you mean by 4:20 . he did not discard 2 solutions . he just stated that the method to use quadratic formula is not working , need other way to solve it
@XJWill1
@XJWill1 40 минут бұрын
The explanation left a lot to be desired, and the solution was all over the place. But he did mention at the beginning that a and b are limited to real values. Here is my solution using that assumption. a^3 - b^3 - 3*a*b - 1 = 0 (a - b - 1)*( a^2 + (b+1)*a + b^2 - b + 1 ) = 0 So this expression is true if a - b = 1 OR it is true if a^2 + (b+1)*a + b^2 - b + 1 = 0 This is a quadratic equation in variable a, and we require a to be real-valued. Therefore, the determinant must be non-negative: (b+1)^2 - 4*1*(b^2 - b + 1) >= 0 - 3 * (b - 1)^2 >=0 b = 1 The determinant is only non-negative for one single value of b. And letting b = 1 in the previous equation results in (a + 1)^2 = 0 so a = -1 Therefore, the complete solution set of the given equation, ASSUMING a and b ARE REAL-VALUED, is: { [a - b = 1] , [ a = -1 , b = 1] } But the problem asked for a - b, so the complete set of possible values for a - b, given a and b are real-valued, is: { a - b = 1 , a - b = -2 }
@scottleung9587
@scottleung9587 Сағат бұрын
I got -2 as my answer.
@joni123451000
@joni123451000 2 сағат бұрын
1
Comparing Two Irrational Numbers
9:20
SyberMath
Рет қаралды 1,8 М.
a+b+c+d+e = abcde
12:01
Prime Newtons
Рет қаралды 67 М.
Маусымашар-2023 / Гала-концерт / АТУ қоштасу
1:27:35
Jaidarman OFFICIAL / JCI
Рет қаралды 390 М.
Ful Video ☝🏻☝🏻☝🏻
1:01
Arkeolog
Рет қаралды 14 МЛН
JISOO - ‘꽃(FLOWER)’ M/V
3:05
BLACKPINK
Рет қаралды 137 МЛН
Solving A Quintic Without Using The Quintic Formula
12:03
SyberMath
Рет қаралды 5 М.
what is i factorial?
7:56
blackpenredpen
Рет қаралды 315 М.
Why You Can't Bring Checkerboards to Math Exams
21:45
Wrath of Math
Рет қаралды 450 М.
Simplifying An Interesting Radical
9:51
SyberMath
Рет қаралды 4,3 М.
Solving a simple cubic equation. A trick you should know!
6:41
MindYourDecisions
Рет қаралды 367 М.
A Nice Tangent Equation
9:43
SyberMath
Рет қаралды 3,1 М.
Harvard University Admission Entrance Tricks | X=?  & Y=?
9:31
Learncommunolizer
Рет қаралды 456 М.
Can you crack this beautiful equation? - University exam question
18:39
An Interesting Exponential Equation
12:11
SyberMath
Рет қаралды 3,6 М.
A Fun Homemade Functional Equation
9:13
SyberMath
Рет қаралды 3 М.
Маусымашар-2023 / Гала-концерт / АТУ қоштасу
1:27:35
Jaidarman OFFICIAL / JCI
Рет қаралды 390 М.