Just take divide numerator and denominator by 5^x. You get integral of dx/5^x(1+1/5^x) Then you set u=1/5^x, du=ln(1/5)/5^x. dx Substitute into the equation 1/ln(1/5) × integral of du/1+u. And the answer is ln(1+1/5^x)/ln(1/5)
@seegeeaye2 ай бұрын
divede 5^x is to multiply 5^-x, the same
@ahmedsabri-ng2xx2 ай бұрын
an interesting integral
@noteventrying272 ай бұрын
mhm
@avielabc6042 ай бұрын
Using kings rule would solve it a lot quicker 🙌
@gelbkehlchen2 ай бұрын
Solution: ∫1/(5^x+1)*dx = ∫(5^x+1-5^x)/(5^x+1)*dx = ∫(5^x+1)/(5^x+1)*dx-∫5^x/(5^x+1)*dx = ∫dx-∫5^x/(5^x+1)*dx = x-∫e^[x*ln(5)]/{e^[x*ln(5)]+1}*dx = x-1/ln(5)*∫e^[x*ln(5)]/{e^[x*ln(5)]+1}*ln(5)*dx --------------------- Substitution: u = e^[x*ln(5)]+1 du = ln(5)*e^[x*ln(5)] --------------------- = x-1/ln(5)*∫1/u*du = x-1/ln(5)*ln|u|+C = x-1/ln(5)*ln|e^[x*ln(5)]+1|+C = x-1/ln(5)*ln|5^x+1|+C Checking the result by deriving: [x-1/ln(5)*ln|5^x+1|+C]’ = 1-1/ln(5)*1/(e^[x*ln(5)]+1)*e^[x*ln(5)]*ln(5) = 1-5^x/(5^x+1) = (5^x+1-5^x)/(5^x+1) = 1/(5^x+1) everything okay!