The final answer can also be written as (pi/2024)*csc(pi/2024).
@owlsmath2 ай бұрын
nice! Yep flip the sin over and there it is
@taranmellacheruvu25042 ай бұрын
Very fun exploration near the end!
@owlsmath2 ай бұрын
Thanks! Yes i really liked that part of this problem :)
@MikeMagTech2 ай бұрын
That ended up being a very interesting and fun problem.
@owlsmath2 ай бұрын
thanks Mike! Worked out much nicer than what I expected originally :)
@adandap2 ай бұрын
The approximation will improve every year!
@owlsmath2 ай бұрын
yes its quite true! 😁
@mohandoshi1532 ай бұрын
This problem and its evaluation could do any elite school integration Bee proud. Great to the see the Gamma function and the Beta Function pop up. Lovely solution development.
@owlsmath2 ай бұрын
Thanks Mohan! Yes really liked this one and the fact that we get both an exact solution and a nice estimate. 👍
@I_like_smashburgers2 ай бұрын
imagine the question just asked for 3dp lol great video btw
@owlsmath2 ай бұрын
Thanks!
@the.lemon.linguist2 ай бұрын
i wonder if there's some generalization for this improper integral for any power n in the integrand 1/(x^n + 1) or if there may even be a generalized antiderivative
@theelk8012 ай бұрын
there most definitely is, you can use the residue theorem to do it
@owlsmath2 ай бұрын
Yes the formula is pi/ (a sin pi/a ). For a > 1
@koennako21952 ай бұрын
Yeah. I remember watching a Dr. Payam video on this generalization. Cool stuff!
@krisbrandenberger5442 ай бұрын
The final answer can also be written as (pi/2024)*csc(pi/2024).
@vijaypraneeth27362 ай бұрын
Michael Penn got a video on it, he generalized it.Check it out