Excellent video 👏👏👏 Instead of Feynman's you can use a fundamental property of Laplace Transform - multiplication with 1/x^2 corresponds to double integration in S domain🍻
@owlsmath19 күн бұрын
Great!!! I like that way better just because it avoids some of the hassle with Feynman. I think you just created another video for me 😆😀
@slavinojunepri764819 күн бұрын
Excellent
@owlsmath18 күн бұрын
Thanks!
@ruud976719 күн бұрын
A tough one!
@owlsmath19 күн бұрын
Yeah! Takes some extra effort to apply Feynman twice!
@Samir-zb3xk19 күн бұрын
I parameterized it as I(a) = (0 to ∞) ∫ [ e^(-(a+1)x) - e^(-x) + axe^(-x) ] / x^2 dx; differentiating with respect to 'a' yields a Frullani integral giving I'(a) = ln(a+1), and then using I(0) = 0, integrating back gives I(23) = 24ln(24) - 23
@owlsmath18 күн бұрын
That's really nice! I didn't think of Frullani integral for this. 👍👍👍
@Samir-zb3xk18 күн бұрын
@owlsmath Yea sometimes when doing Feynman integration, placing the parameter in more than one spot can make things nicer Btw Merry Christmas
@owlsmath18 күн бұрын
@@Samir-zb3xk Merry Christmas! And thanks for the idea! :)