hocam çok teşekkür ederim sizin kanalı izleyerek karmaşık sayıları çok geliştirdim.
@aplusbiАй бұрын
Sevindim. Rica ederim
@scottleung9587Ай бұрын
Nice - although I do have one question: why did you express 2^z as (e^ln(2))^z instead of (2*e^(2*pi*n*i))^z?
@aplusbiАй бұрын
Thanks! That's a good question. I think it's because z is the exponent and that takes care of multiple values for the exponent to produce -sqrt(2). WA also agrees with this. If I include 2πni on the left hand side, it does not produce -sqrt(2). check this out: www.wolframalpha.com/input?i2d=true&i=Power%5B2%2CDivide%5BlnSqrt%5B2%5D%2B%CF%80i%2Cln2%2B2%CF%80i%5D%5D Funny that it rather gives us sqrt(2). I'm not exactly sure why this is happening (translation: too lazy to check 😜)
@seanoliver202818 күн бұрын
I am still learning quadratics so i may be a bit off, but can't you just square both sides to get 2^(2z)=2 , and thus z=1/2 ?
@seanoliver202818 күн бұрын
More specifically, could you not square the negative of a square root, -sqrt(2) , to get the square, 2 ?
@XJWill1Ай бұрын
No, the log of the product equals the sum of the logs is NOT an identity for complex numbers. It is not even an identity for negative real numbers.
@aplusbiАй бұрын
counter-examples?
@XJWill1Ай бұрын
@@aplusbi I'm sure you can find some yourself. You have a complex number YT channel after all!
@GustavoHenrique-xp5wmАй бұрын
@@XJWill1Even if you're right, you sound like the idiot here
@SweetSorrow777Ай бұрын
Rewrite the right-hand side as -1*(2^(1/2)) and -1 as e^(PI *i). The left-hand side as e^(z*ln2). EZPZ
@aplusbiАй бұрын
lemon squeezy 😜
@FisicTrapellaАй бұрын
So, the imaginary part of z gives us the minus sign... We have 2^[(2n+1)(pi)i / ln2] = -1 similarly as e^[(2n+1)(pi)i ] = e^[(2n+1)(pi)i / lne] = -1
@aplusbiАй бұрын
The minus sign is a key to the imaginary world...😜😁