Applied DSP No. 3: Short-Time Fourier Transform

  Рет қаралды 20,036

Youngmoo Kim

Youngmoo Kim

Күн бұрын

Пікірлер: 23
@bigmistqke
@bigmistqke 2 жыл бұрын
These videos are really great. Not a lot of approachable and clear DSP content around, but these ones really hit the sweet spot!
@arullin
@arullin 3 жыл бұрын
Clarity with visualisation....superb presentation
@phil.s3713
@phil.s3713 Жыл бұрын
This video and the editing are amazing! Thank you for taking the time to make it.
@bradlanducci9011
@bradlanducci9011 Жыл бұрын
As a CS major who is learning this stuff for audio programming, I find these videos very understandable. I have no real background in DSP, but I've been watching your videos and others like it and these stand out by far as the most informative.. thanks!
@fano72
@fano72 3 жыл бұрын
High quality educational content!
@oscarwjy5084
@oscarwjy5084 3 жыл бұрын
OMG finally I understand the concept of STFT and spectrogram, this really help a lot for my final year speech enhancement project tqvm!
@AlexGarcia-cr5st
@AlexGarcia-cr5st 2 жыл бұрын
wow. I loved your intro! Amazing job
@yesidcanoc
@yesidcanoc 3 жыл бұрын
Thank you for this great lecture.
@netanelmad
@netanelmad Жыл бұрын
Great videos! Thank you so much
@안준표-o5p
@안준표-o5p 2 жыл бұрын
좋은 강의 잘들었습니다. 감사합니다.
@irelandtamilandamo
@irelandtamilandamo 3 жыл бұрын
Really a great lecture !!
@antoniodiaz3896
@antoniodiaz3896 3 жыл бұрын
👏👏👏 bravo!!!
@nayanvats3424
@nayanvats3424 2 жыл бұрын
Are we going to discuss about Single Frequency Filtering, which uses a filter bank approach to overcome the shortcoming of STFT and can provide better frequency and time resolution ?
@TheGmr140
@TheGmr140 3 жыл бұрын
wonderful video
@eduardojreis
@eduardojreis 11 ай бұрын
Great series! Much much appreciated! I got a question: 09:07 - It is said that a frequency could occur at anywhere, implying there are segments that frequency does not occur. However, my current understanding is that the FFT of the full signal assumes each frequency component is present at ALL times (not SOME timer, nor anytime), with its particular magnitude. Right?
@austin_ma
@austin_ma Жыл бұрын
Thank you sir!!!!
@71sephiroth
@71sephiroth 3 жыл бұрын
wish I could apply for this course with all the materials....
@세오y
@세오y 3 жыл бұрын
amazing, lecture.....shout it out!
@ytubeleo
@ytubeleo 2 жыл бұрын
Excellent video. At 07:00, instead of padding with zeros, could resolution be improved by just repeating the original signal section several times and taking the Fourier transform of that? Would that increase our resolution or not work? For example, if I have a 10 second ECG recording, would it be sensible to repeat it 10 times and do the Fourier transform of that to try to get better resolution? For example, when trying to find the fundamental frequency more accurately. What would you recommend? Would it work to stretch out the signal - interpolating it - for example to ten times the number of samples (or increase the sample rate) to get higher resolution? Apart from saving on computation of interpolation, does zero-padding give more accurate estimations of peaks? Thanks!
@spasmodia
@spasmodia 2 жыл бұрын
If I'm not mistaken, zero padding is the process of interpolation and youre essentially adding "zero data" in-between samples to bridge these samples. Repeating the same signal will just give you the same Frequency Response which you've already gotten from the first sample.
@youngmoo-kim
@youngmoo-kim 2 жыл бұрын
No, repeating the period would give you more frequency samples, but it wouldn't increase actual frequency resolution because the Fourier Transform is already the infinite periodic replication of your signal. Similarly, the zero padding (extension of the signal with zeros to create a larger "base period") doesn't add new information, but just increases the samples of the Fourier transform to reveal what's already there. For fundamental frequency estimation, the best approach is to take whatever signal you have (10 sec) and then zero-pad with enough zeros to get a better resolution of the frequency peaks. Interpolation/resampling of the signal would not provide higher resolution... the frequency content (and total information) of your signal is fixed. No amount of DSP will add useful information, so the goal is to most clearly reveal the info that's already there. Hope this is helpful!
@youngmoo-kim
@youngmoo-kim 2 жыл бұрын
@@spasmodia Just to be clear, zero-padding is adding zeros to the end of your signal "frame" (not in between the samples of the signal itself... that's a form of upsampling). You're correct that the frequency content when upsampling remains the same, it just changes the position of the aliases. This is, in fact, part of the process I used to create the aliased sound samples.
@classicalharmonicanalysis3348
@classicalharmonicanalysis3348 Жыл бұрын
Small typo at 2:15 - instead of "t" it should be "n" and get rid of "dt". Otherwise neat video :)
Applied DSP No. 4: Sampling and Aliasing
14:25
Youngmoo Kim
Рет қаралды 13 М.
Applied DSP No.  7: The Convolution Theorem
14:40
Youngmoo Kim
Рет қаралды 13 М.
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,2 МЛН
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 16 МЛН
黑天使被操控了#short #angel #clown
00:40
Super Beauty team
Рет қаралды 54 МЛН
The Spectrogram and the Gabor Transform
13:15
Steve Brunton
Рет қаралды 65 М.
The Short Time Fourier Transform | Digital Signal Processing
19:01
Free Engineering Lectures
Рет қаралды 49 М.
Short-Time Fourier Transform Explained Easily
34:47
Valerio Velardo - The Sound of AI
Рет қаралды 79 М.
Applied DSP No. 8: Filtering via Fast Fourier Transform
7:52
Youngmoo Kim
Рет қаралды 20 М.
Wavelets: a mathematical microscope
34:29
Artem Kirsanov
Рет қаралды 652 М.
Short-time Fourier Transform and the Spectogram
13:09
Barry Van Veen
Рет қаралды 113 М.
Convolution and the Fourier Transform explained visually
7:55
Mark Newman
Рет қаралды 39 М.